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Preface 
 
 
A joint meeting between four ISSMGE technical committees was held on 14 Oct 2015 at the 
conference venue of the 5th International Symposium on Geotechnical Safety and Risk (ISGSR2015), 
13-16 Oct 2015, Rotterdam, Netherlands.  Participants came from TC304 (Engineering practice of 
risk assessment and management), TC205 (Safety and serviceability in geotechnical design), TC212 
(Deep foundations), and TC 302 (Forensic geotechnical engineering) (Figure 1). The meeting was 
graced by the attendance of three TC chairs: KK Phoon (TC304 Chair) (Figure 2), Brian Simpson 
(TC205 Chair) (Figure 3), and G.L. Sivakumar Babu (TC302 Chair) (Figure 4). A report of the 
meeting was published in ISSMGE Bulletin Volume 10, Issue 1, February 2016, pp. 21-22. 

A Joint TC205/TC304 Working Group on “Discussion of statistical/reliability methods for 
Eurocodes” was convened after the meeting to continue the conversation, particularly with regards to 
the following constructive goals in mind: 

1. Identify the benefits and scope of applicability for reliability methods in geotechnical design 
2. Identify gaps (e.g. unknown unknowns) and review existing literature for possible solutions. 
3. Compile information on soil property and model uncertainties – this information is useful 

for design in both deterministic and reliability context. 
4. Based on the above, can we refine and build on Annex D of ISO2394 to produce a useful 

annex for future codes such as the next revision of Eurocode 7? (e.g., further clarification of 
characteristic value? reliability calibrated partial factors? Bayesian updating to combine 
limited site data with global data from comparable sites?). 

This Final Report was prepared in the spirit of open consultation and inclusive collaboration. An 
open call for participation in the Joint TC205/TC304 Working Group was made at the 21st TC304 
meeting and the 25th TC205 meeting (both February 2016). Lead discussers who were interested to 
moderate a discussion topic were requested to submit a 1-page brief containing: (a) title of topic, (b) 
name of lead and other contributors, and (c) an abstract describing what the group hoped to achieve 
within a time frame of 3 months. The lead discussers invited group members through personal 
invitation and open invitation by posting their 1-page briefs on the TC304 website (March 2016). A 
preliminary draft containing around 10 pages was prepared by each group and made available to all 
groups and other interested participants (August 2016). Comments on these 10-page preliminary 
drafts were invited to fill in gaps in the coverage, to reduce overlap in the coverage of the topics 
between groups, and to voice other concerns between September and November 2016. The first draft 
of the full report was published in April 2017. A discussion session was organized in Georisk 
2017/ISGSR 2017, June 4-6 2017, Denver, Colorado for participants to share ideas for finalizing the 
report. Public consultation took place between April and July 2017. This Final Report is published in 
September 2017 and made available to the ISSMGE community during the 19th International 
Conference on Soil Mechanics and Geotechnical Engineering (19ICSMGE), Sep 17-22 2017, Seoul, 
Korea. A Joint TC205/TC304 Workshop is planned for 20 September 2017 in conjunction with the 
19ICSMGE to present the key findings in each chapter and to discuss future directions and 
challenges. 

Given the scope and complex nature of this discussion spanning reliability theory, code drafting, 
design practice, risk management, and others, diverse perspectives are to be expected. Discussion 
leaders have taken onboard comments by revising the main body of the chapter or inviting the 
commentator to submit a “Discussion”. Separate discussion threads possibly reflecting alternate 
perspectives are appended at the end of each chapter in the form of “Discussion” and “Reply to 
discussion” (standard journal practice). In addition, discussion leaders were encouraged to read other 
chapters and add citations to other chapters/other works in the literature pointing to complementary 
findings or conflicting views to ensure both mainstream and alternate views were represented in a 
balanced and inclusive manner. 

The Chairs of TC205 and TC304 are exceedingly grateful to the participants (list of members 
provided below) who have enthusiastically contributed to this joint working group and to the lead 
discussers who have invested significant time and efforts to moderate the discussions and to take the 
lead in drafting their chapters. Professor Malcolm Bolton graciously contributed a preliminary draft in 
the form of PPT on “Limits of reliability analysis”. However, the full chapter is not available. This 
Final Report is by no means a “finished” product – the discussion threads appended to the end of 
some chapters amply demonstrate a healthy exchange of views to improve our state of practice. As 
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discussed during the 2015 Rotterdam meeting, one advantage for adopting reliability analysis despite 
known limitations is to sharpen our appreciation of the gap between the calculated and observed 
probability of failure. The current “baseline” reliability approach that primarily focuses on dealing 
with known unknowns (uncertainties quantifiable statistically from data) as rationally as possible may 
point the way towards closing the gap in the future by updating reliability with more information such 
as monitoring (which is philosophically aligned to the observational approach) or stimulating research 
to get a better handle on unknown unknowns (e.g. human errors). Ultimately, no design approach can 
completely do away with engineering judgment given the challenging conditions that a geotechnical 
engineer routinely encounters in a project (spatially variable site with unique conditions that may 
change with time, scarce information, geologic surprises, etc.). Nonetheless, a more rational design 
approach, be it reliability or otherwise, arguably can improve our state of practice in a more directed 
way by combining with other risk management strategies, taking advantage of data analytics, and 
perhaps most importantly, focusing our engineering judgment on what it does best - setting up the 
right lines of scientific investigation, selecting the appropriate models and parameters for calculations, 
and verifying the reasonableness of the result. Directions for future work are presented in the last 
chapter, including the outcomes from the ISSMGE Global Survey conducted between 10 March and 
30 April 2017 that are relevant to TC205 and TC304. 

The exclusive rights to use and distribute each chapter belong to the authors. This Final Report 
can be downloaded from http://140.112.12.21/issmge/tc304.htm for use in education and research 
with permission from the authors. 
 
Kok-Kwang Phoon (Chair, TC304) and Brian Simpson (Chair, TC205) 
September 2017 
 

 
 

Figure 1.  Attendees of joint meeting between ISSMGE TC304, TC205, TC212 and TC 302 at the 
5th International Symposium on Geotechnical Safety and Risk, 13-16 Oct 2015, Rotterdam, 

Netherlands 
 

 

	
Figure 2. Prof Kok-Kwang Phoon (Chair of TC304) welcoming participants to the Rotterdam joint 

meeting. 
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Figure 3. Dr Brian Simpson (Chair of TC205) presenting his views on role of reliability analysis in 
design calculations. 

	

	
 

Figure 4. Prof G.L. Sivakumar Babu (TC302 Chair) presenting his views on role of probabilistic 
design and analysis methods in forensic geotechnical engineering. 
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Chapter 1 Transformation Models and Multivariate Soil Databases 

 
 

Lead discusser: 

Jianye Ching (contributor of CLAY/10/7490 & SAND/7/2794) 

jyching@gmail.com 

Discussers (alphabetical order): 

 Marcos Arroyo, Jieru Chen (contributor of SAND/7/2794), Celeste Jorge, Tim Länsivaara 

(contributor of F-CLAY/7/216), Dianqing Li, Paul Mayne, Kok-Kwang Phoon, Widjojo Prakoso, 

Marco Uzielli 
 
 

1.1 INTRODUCTION 
 

Transformation models (Phoon and Kulhway 1999) are valuable because they serve as “prior” 
information for correlation behaviors among various soil parameters. Useful compilations of these 
models are available in the literature (e.g., Djoenaidi 1985; Kulhawy and Mayne 1990; Mayne et al. 
2001). For instance, it is common to estimate the friction angle () of sand based on its SPT N value 
through a transformation model derived from data points obtained in the literature, as is showed in 
Figure 1-1. Here, the SPT N value is the site-specific information, and the friction angle  is the 
design soil parameter, also assumed as site-specific. However, the SPT N- transformation model is 
not site-specific and is typically developed using a SPT N- database collected from the literature. It 
is customary to adopt such a transformation model, which is not site-specific, in the process of 
estimating site-specific . This process is illustrated in Figure 1-1. Suppose that the (N1)60 value 
(corrected N value) of a sand at certain depth at the design site is known to be 25. A vertical line is 
drawn at this (N1)60 value in Figure 1-1, and there are quite a few SPT N- data points that are with 
similar (N1)60 values (circles). Although these data points are not site-specific, their  values may be 
meaningful. If the design site characteristics are within the coverage of the SPT N- database, it is 
reasonable to think that the site-specific  value can be captured by the ensemble of these 
non-specific  values. By doing so, a single measurement of site-specific SPT N is converted into 
several “equivalent”  values that are viewed as posterior information for the actual site-specific  
value. 

Although this ensemble of “equivalent”  values (posterior information) may be a meaningful 
and realistic representation of the actual site-specific  value, there are occasion concerns expressed 
in the literature that the transformation models are applied too liberally in practice without careful 
consideration of their limitations. The purpose of this report is therefore to address the following 
practical questions: 

1. What does the design soil parameter estimated from a transformation model really mean? The 
estimate can be a point estimate (e.g., the average of the equivalent  values) or an interval 
estimate (e.g., the range of the equivalent  values). 

2. In what conditions will a transformation model produce meaningful estimates that are closely 
related to the actual site-specific design soil parameter? 

3. In what conditions will a transformation model produce meaningless results that have very 
little to do with the actual site-specific design soil parameter? 

This report will address the above questions through the “leave-one-out” design exercise based 
on a real soil database. The soil database is divided into two subsets: the first subset contains data 
points from a single site (design site), whereas the second subset contains the remaining sites in the 
database (training sites). The purpose of the leave-one-out exercise is to construct the transformation 
model based on the training sites, and then estimate the design soil parameter for the design site. The 
effectiveness of the transformation model can then be verified by comparing the estimation result and 
the actual value of the design soil parameter. To understand the effect of adopting a “general” soil 
database versus a “regional” soil database, two clay databases were investigated: one general database 
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for generic clays, and one regional database for Finland clays. 

 

Figure 1-1 Transformation model between (N1)60 and  derived from data points in the literature. 
 

1.2 MULTIVARIATE SOIL DATABASES 
 

Two clay databases and one sand database, shown with light grey background in Table 1-1, were 
investigated. For completeness, three other clay databases available in the literature are also shown in 
the table. The databases are labelled as (soil type)/(number of parameters of interest)/(number of data 
points). The two clay databases, CLAY/10/7490 and F-CLAY/7/216, will be adopted to conduct the 
leave-one-out design exercise. CLAY/10/7490 is a general clay database, whereas F-CLAY/7/216 is a 
regional (Finland) clay database. SAND/7/2794 is a general sand database. 
 

Table 1-1 Several multivariate soil databases. 

Database Reference 
Parameters  
of interest 

# data 
points 

# sites/ 
studies 

Range of properties 
OCR PI St 

CLAY/5/345 
Ching and 

Phoon 
(2012a) 

LI, su, su
re, ’

p, ’
v 345 37 sites 1~4  

Sensitive to 
quick clays 

CLAY/6/535 
Ching et al. 

(2014) 

su/σ'
v, OCR, 

(qtσv)/σ'
v, 

(qtu2)/σ'
v, 

(u2u0)/σ'
v, Bq 

535 40 sites 1~6 
Low to very 

high 
plasticity 

Insensitive to 
quick clays 

CLAY/7/6310 
Ching and 

Phoon (2013, 
2015) 

su from 7 
different test 
procedures 

6310 
164 

studies 
1~10 

Low to very 
high 

plasticity 

Insensitive to 
quick clays 

CLAY/10/7490 
Ching and 

Phoon (2014) 

LL, PI, LI, '
v/Pa, 

St, Bq, 
'

p/Pa, su/'
v,  

(qtσv)/σ'
v, 

(qtu2)/σ'
v,

7490 
251 

studies 
1~10 

Low to very 
high 

plasticity 

Insensitive to 
quick clays 

F-CLAY/7/216 
D’Ignazio et 

al. (2016) 
su

FV, v, p, wn, 
LL, PL, St 

216 24 sites 1~7.5 
Low to very 

high 
plasticity 

Insensitive to 
quick clays 

SAND/7/2794 
Ching et al. 

(2017) 

D50, Cu, Dr, 
'

v/Pa, 
, qt1, (N1)60 

2794 
176 

studies 
1~15 

D50 = 0.1~40 mm 
Cu = 1~1000+ 

Dr = -0.1~117% 
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Note: LL = liquid limit; PL = plastic limit; PI = plasticity index; LI = liquidity index; wn = natural water content; 
D50 = median grain size; Cu = coefficient of uniformity; Dr = relative density; ’

v = vertical effective stress; ’
p = 

preconsolidation stress; su = undrained shear strength; su
FV = undrained shear strength from field vane; su

re = 
remoulded su;  = effective friction angle; St = sensitivity; OCR = overconsolidation ratio, (qt-σv)/σ'

v = 
normalized cone tip resistance; (qt-u2)/σ'

v = effective cone tip resistance; u0 = hydrostatic pore pressure; 
(u2-u0)/σ'

v = normalized excess pore pressure; Bq = pore pressure ratio = (u2-u0)/(qt-σv); Pa = atmospheric 
pressure = 101.3 kPa; qt1 = (qt/Pa)CN (CN is the correction factor for overburden stress); (N1)60 = N60CN (N60 is 
the N value corrected for the energy ratio). 
 

1.2.1 CLAY/10/7490 
 

The CLAY/10/7490 database (Ching and Phoon 2014) is a general clay database consisting of data 
points from 251 studies. The geographical regions cover Australia, Austria, Brazil, Canada, China, 
England, Finland, France, Germany, Hong Kong, India, Iraq, Italy, Japan, Korea, Malaysia, Mexico, 
New Zealand, Norway, Northern Ireland, Poland, Singapore, South Africa, Spain, Sweden, Thailand, 
Taiwan, United Kingdom, United States, and Venezuela. The clay properties cover a wide range of 
overconsolidation ratio (OCR) (but mostly 1~10), a wide range of sensitivity (St) (sites with St = 1~ 
tens or hundreds are fairly typical), and a wide range of plasticity index (PI) (but mostly 8 ~ 100). Ten 
dimensionless parameters of clays are of primary interest: liquid limit (LL), plasticity index (PI), 
liquidity index (LI), normalized vertical effective stress ('

v/Pa) (Pa is one atmosphere pressure = 101.3 
kN/m2), normalized preconsolidation stress ('

p/Pa), normalized undrained shear strength (su/'
v) (su 

converted to the “mobilized” su defined by Mesri and Huvaj 2007), St, normalized piezocone tip 
resistance (qt-σv)/σ'

v, and normalized effective piezocone tip resistance (qt-u2)/σ'
v, and piezocone pore 

pressure ratio Bq. Some other dimensionless parameters of interest, such as su/'
p, OCR, and su

re/Pa, 
can be derived from the above 10 parameters. The basic statistics of all these parameters (10 basic 
parameters together with su/'

p, OCR, and su
re/Pa) are listed in Table 1-2. 

 

Table 1-2 Statistics for the CLAY/10/7490 database (Table 3 in Ching and Phoon 2014) 

Variable n* Mean COV* Min Max 

LL 3822 67.7 0.80 18.1 515 

PI 4265 39.7 1.08 1.9 363 

LI 3661 1.01 0.78 -0.75 6.45 

'
v/Pa 3370 1.80 1.47 4.13E-3 38.74 

'
p/Pa 2028 4.37 2.31 0.094 193.30 

su/'
v 3538 0.51 1.25 3.68E-3 7.78 

St 1589 35.0 2.88 1 1467 

Bq 1016 0.58 0.35 0.01 1.17 

(qt-σv)/σ'
v 862 8.90 1.17 0.48 95.98 

(qt-u2)/σ'
v 668 5.34 1.37 0.61 108.20 

su/'
p 1467 0.23 0.55 3.68E-3 1.34 

OCR 3531 3.85 1.56 1.0 60.23 

su
re/Pa 1143 0.075 2.86 9.67E-5 2.47 

*n is the number of data points; COV stands for the coefficient of variation. 
 

1.2.2 F-CLAY/7/216 
 

The F-CLAY/7/216 database (D’Ignazio et al. 2016) is a regional clay database consisting of 216 field 
vane (FV) data points from 24 different test sites from Finland. Each data point contains genuine 
multivariate information on 7 clay parameters measured at comparable depths and sampling locations: 
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FV undrained strength (su
FV), vertical effective stress (v), preconsolidation stress (p), water content 

(w), liquid limit (LL), plastic limit (PL), and sensitivity (St). The clay properties cover wide ranges of 
sensitivity (St = 2~64), plasticity (PI = 2~95), overconsolidation ratio (OCR = 1~7.5), and water 
content (w = 25~150). To be consistent with Table 1-2, these parameters are converted to 
dimensionless parameters PI, LI, '

v/Pa, '
p/Pa, su/'

v, etc., in which su = (design value of su) = 
su

FV(correction factor proposed by Bjerrum 1972). The basic statistics for these dimensionless 
parameters are listed in Table 1-3. 

 

Table 1-3 Statistics for the F-CLAY/7/216 database 

Variable n Mean COV Min Max 

LL 216 66.3 0.30 22.0 125.0 

PI 216 38.5 0.48 2.0 95.0 

LI 216 1.44 0.46 0.42 4.80 

'
v/Pa 216 0.46 0.48 0.074 1.61 

'
p/Pa 216 0.79 0.50 0.20 2.27 

su/'
v 216 0.40 0.74 0.11 2.71 

St 216 17.4 0.79 2 64 

su/'
p 216 0.22 0.31 0.058 0.52 

OCR 216 1.84 0.51 1.0 7.5 

su
re/Pa 216 0.016 0.99 0.0011 0.14 

 

1.2.3 Comparison between CLAY/10/7490 and F-CLAY/7/216 
 

The main difference between the two databases is that CLAY/10/7490 is a general database, whereas 
F-CLAY/7/216 is a regional database. A preliminary comparison between Tables 1-2 and 1-3 indicates 
the following distinct features between the general and regional databases: 

1. The number of data points for the general database is significantly larger than that for the 
regional database. 

2. The range spanned between the minimum and maximum values for the general database is 
significantly wider than that for the regional database. As a result, the COVs for the general 
database are significantly larger than those for the regional database. 

Figure 1-2 shows the LI-St, OCR-su/'
v, LI-'

p/Pa, and PI-su/'
p relationships for the two databases. It 

is clear that the coverage of the general database (CLAY/10/7490) is wider than the coverage of the 
regional database (F-CLAY/7/216). There are six data points from four Finland sites (annotated in 
Figure 1-2) with LI > 3, but with exceptionally low St. These six data points in F-CLAY/7/216 are not 
within the coverage of the general database CLAY/10/7490. 
 

1.3 USE OF DATABASE IN ESTIMATING SITE-SPECIFIC DESIGN SOIL 

PARAMETER 
 
In the design process, a soil database can be adopted to develop a transformation model that can be 
further used to estimate the design soil parameter (e.g., su) for the design site based on site-specific 
information. For instance, based on the site-specific OCR information of a clay at a design site, its 
su/'

v value can be estimated from an OCR-su/'
v transformation model developed from a clay 

database. Note that the clay database and the resulting transformation model are not site-specific. A 
question may arise: is the resulting su/'

v estimate site-specific or not? This question can be answered 
by comparing the su/'

v estimate with the actual site-specific su/'
v value. If the su/'

v estimate can 
capture the actual site-specific su/'

v value, the su/'
v estimate is site-specific. Otherwise, it is not. This 

comparison can be realized by the leave-one-out design exercise. The details for this leave-one-out 
exercise will be presented later. Consider two scenarios: 
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1. Scenario 1: A regional database, such as F-CLAY/7/216, is adopted to develop the OCR-su/'
v 

transformation model. 
2. Scenario 2: A regional database is not available. A general database, such as CLAY/10/7490, 

is used to develop the OCR-su/'
v transformation model. 

For both scenarios, the question whether the resulting su/'
v estimate is site-specific or not will be 

addressed. The effect for adopting a regional database against a general database will be also 
illustrated. 
 

  

  

Figure 1-2 LI-St, OCR-su/'
v, LI-'

p/Pa, and PI-su/'
p relationships for the two databases. 

 

1.3.1 Scenario 1 
 
Let us consider a new Finland site, and suppose the design engineer has the regional database 
F-CLAY/7/216. Consider a clay at that site with a known site-specific OCR, denoted by OCRnew. The 
goal is to estimate its site-specific su/'

v, denoted by (su/'
v)new. The estimate can be either a point 

estimate or an interval estimate. The design engineer can adopt the OCR-su/'
v data points in the 

database to develop the following transformation model: 
 
   u vln s a b ln OCR       (1-1.) 

 
where (a, b) are unknown coefficients to be estimated;  is the transformation error, modeled as a 
zero-mean normal random variable with standard deviation . (a, b) can be estimated by least 
squares: 
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 (1-2.) 

 
where (a*, b*) denote the least square estimates for (a, b); OCRi and (su/'

v)i denote the OCR and 
(su/'

v) values of the i-th data point in the clay database; n is the number of data points in the database. 
 can be estimated as well: 
 

    
n 2

* * *
u v ii

i 1

1
log s a b log OCR

n 2


          (1-3.) 

 
The design engineer can then obtain two useful estimates for ln[(su/'

v)new]: (a) the point estimate 
a*+b*ln(OCRnew); and (b) the 95% confidence interval (CI) estimate defined by: 
 

 
  2

new m* * *
new 0.975

xx

ln OCR x1
a b ln OCR   t 1

n S

          (1-4.) 

 
where t0.975 is the 97.5% percentile for the Student-t distribution with (n-2) degrees of freedom. In the 
following illustration, we will focus on the 95% confidence interval (CI) estimate. The 95% CI in Eq. 
(1-4.) is a “nominal” 95% CI. It is unclear whether it is a genuine 95% CI. Namely, it is unclear 
whether the actual chance for ln[(su/'

v)new] to be within the interval is indeed close to 95%. 
To illustrate that the nominal 95% CI is genuine, consider the following “leave-one-out” design 

exercise. There are 24 sites in the F-CLAY/7/216 database. Each time, one site is treated as the new 
design site, whereas the remaining 23 sites are treated as the training sites. Note that the new design 
site and the training sites belong to the same “population”: they are all Finland sites. However, the 
design site is independent of the 23 training sites. There may be several clay data points in the design 
site. For each clay at the design site, its OCRnew is considered known, e.g., an oedometer test is 
conducted to determine its OCR. However, we “pretend” its (su/'

v)new to be unknown. First, (a*,b*,
*) 

are estimated based on the 23 training sites using Eqs. (1-2.) and (1-3.). The point estimate for 
ln[(su/'

v)new] is a*+b* ln(OCRnew) and the nominal 95% CI for ln[(su/'
v)new] is obtained using Eq. 

(1-4.). Because ln[(su/'
v)new] for the clay is actually known, we can compute the prediction error e = 

ln[(su/'
v)new]–a*–b*ln(OCRnew) and also determine whether ln[(su/'

v)new] is within the nominal 95% 
CI. This leave-one-out exercise is repeated for all 216 data points in F-CLAY/7/216. Figure 1-3 shows 
the histogram of the 216 prediction errors. The prediction errors have a mean value that is roughly 
zero. Among the 216 leave-one-out trials, ln[(su/'

v)new] is within the nominal 95% CI for 202 times. 
This means that the CI is in effect a 202/216 = 93.5% CI: it is reasonably close to a genuine 95% CI. 
The difference between 93.5% and 95% may be partially due to the statistical uncertainty. 

The above leave-one-out design exercise shows that the nominal 95% CI developed by the 23 
training sites is close to genuine. This is probably because the design site and the 23 training sites 
belong to the same population, e.g., Finland sites. When this happens (same population), the nominal 
95% CI is theoretically the genuine 95% CI. This conclusion should not change if all 24 sites in 
F-CLAY/7/216 are adopted to develop the transformation model and goal is to estimate the (su/'

v)new 
for a 25th site that is not in F-CLAY/7/216. This justifies the use of a transformation model in the case 
where the design site belongs to the same population. 

There is a caveat here: the training soil database needs to have a sufficient coverage to represent 
the population. In the above leave-one-out design exercise, there are 24 – 1 = 23 training sites. If the 
number of sites is small, the training sites can no longer represent the Finland population, and the 
nominal 95% CI can cease to be genuine, so the actual chance for ln[(su/'

v)new] to be within the 
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nominal 95% CI will not be close to 95%. Figure 1-4 shows how this actual chance varies with 
respect to the number of training sites (see the line with legend “Scenario 1”). Consider a subset 
database with (nt + 1) sites randomly sampled from the 24 sites in F-CLAY/7/216. The leave-one-out 
design exercise is conducted on the subset database with nt training sites and one design site, and the 
chance for ln[(su/'

v)new] to be within the 95% CI can be evaluated. This actual chance is itself random 
because it depends on the random sampling effect of the (nt + 1) sites. Therefore, the subset database 
with (nt + 1) sites is randomly sampled for 100 times to obtain 100 samples for the actual chance. The 
horizontal axis in Figure 1-4 is the number of training sites (nt) and the vertical axis is the average of 
the 100 samples for the actual chance. The (averaged) actual chance seems to converge to 95% with 
increasing number of sites. The actual chance is significantly less than 95% if the database contains 
less than 4 Finland sites, whereas the actual chance is close to 95% if the database contains more than 
10 Finland sites. This means that for the Finland case, a regional database with more than 10 sites 
should have a sufficient coverage. 

 

 
Figure 1-3 Histogram of the prediction error e. 

 

 

Figure 1-4 Chance for ln[(su/'
v)new] to be within the nominal 95% CI. 

 

1.3.2 Scenario 2 
 

Suppose that the new design site is a Finland site, but a Finland database is not available. Yet, suppose 
the design engineer has the general database CLAY/10/7490. Note here that now the design site and 
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the training sites do not belong to the same population: the training sites obviously have a wider 
coverage because they are global sites. The OCR-su/'

v data points in CLAY/10/7490 are from 179 
global sites from Americas, Europe, Asia, etc. The design engineer can still adopt the OCR-su/'

v 
transformation model developed from CLAY/10/7490 to obtain the nominal 95% CI, but is it still a 
genuine 95% CI with respect to the Finland design site? 

To understand the significance of the nominal 95% CI obtained from a general database, the 
following design exercise is taken. It is not necessary to do leave-one-out, because the design site is 
not within the general database. First, (a*, b*, 

*) are estimated using Eqs. (1-2.) and (1-3.) based on 
the general database. Each clay data point in F-CLAY/7/216 is a Finland design case. Its OCR value is 
treated as known (denoted by OCRnew), whereas we pretend its su/'

v value to be unknown [denoted by 
(su/'

v)new]. The nominal 95% CI for this ln[(su/'
v)new] can be obtained using Eq. (1-4.) based on (a*, b*, 


*) and OCRnew. Nonetheless, ln[(su/'

v)new] is actually known, and we can determine whether 
ln[(su/'

v)new] is within the nominal 95% CI. This exercise is repeated for all 216 data points in 
F-CLAY/7/216. It turns out that the actual chance for ln[(su/'

v)new] of a Finland clay to be within the 
nominal 95% CI is 99.1%, significantly larger than 95%. This is probably because the design site and 
the 179 training sites belong to different populations. When this happens (different populations), there 
is no guarantee that the nominal 95% CI is genuine. 

There are 179 sites in the general database CLAY/10/7490. It is interesting to know that the 
actual chance will change if there is a different number of training sites. Figure 1-4 shows how the 
actual chance varies with respect to the number of training sites (nt) (see the line with legend 
“Scenario 2”). Again, the actual chance is random due to the random sampling effect of the nt sites. 
Therefore, the subset database with nt sites is randomly sampled from the 179 sites for 100 times to 
obtain 100 samples for the actual chance. The actual chance seems to converge to 100% with 
increasing number of training sites, rather than converge to 95%. The 95% CI developed from a 
general database with many sites is “conservative” with respect to a Finland site, in the sense that the 
actual chance for ln[(su/'

v)new] of a Finland site to be within the 95% CI is more than 95%. The 
nominal 95% CI is wider than the genuine 95% CI, because CLAY/10/7490 has a wider coverage than 
the Finland database F-CLAY/7/216. This wider coverage can be clearly seen in Figure 1-2. 
Nonetheless, the actual chance can be significantly less than 95% if the general database contains less 
than 4 sites. 

 

1.3.3 Scenario “A” 
 

Let us consider a rather academic scenario: the new design site belongs to the “general population” 
containing all global sites. We call this scenario “Scenario A”. The purpose of this scenario is to 
further verify the significance of the nominal 95% CI developed from the general database. Let a clay 
at the design site have a known site-specific OCR, denoted by OCRnew. The goal is to estimate its 
unknown su/'

v, denoted by (su/'
v)new. The nominal 95% CI for ln[(su/'

v)new] is constructed by the 
general database CLAY/10/7490. Note that the sites in the general database CLAY/10/7490 also 
belong to the general population. Therefore, the design site and the training sites belong to the same 
general population. Is this nominal 95% CI the genuine 95% CI with respect to the new design site? 

The following leave-one-out design exercise is adopted to illustrate the significance of the 
nominal 95% CI. The OCR-su/'

v data points in the CLAY/10/7490 database are from 179 sites. Each 
time, one site is treated as the design site, whereas the remaining 178 sites are treated as the training 
sites. First, (a*, b*, 

*) are estimated based on the 178 training sites using Eqs. (1-2.) and (1-3.), and 
the nominal 95% CI for ln[(su/'

v)new] is obtained using Eq. (1-4.). Nonetheless, the ln[(su/'
v)new] for 

the design site is actually known so that we can determine the chance for ln[(su/'
v)new] to be within 

the nominal 95% CI. The actual chance for ln[(su/'
v)new] to be within the nominal 95% CI is about 

94.4%, close to 95%. Again, the caveat is that there are a sufficient number of sites in the database. 
Figure 1-5 shows how the actual chance varies with respect to the number of training sites (nt). The 
(averaged) actual chance seems to converge to 95% with increasing number of sites. The actual 
chance is close to 95% if the number of sites is more than 50. 

 

1.3.4 Discussions 
 

The key questions that this study aims to address are: 
1. What does the design soil parameter estimate from a transformation model really mean? 
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2. In what conditions will a transformation model produce meaningful estimates that are closely 
related to the actual site-specific design soil parameter? 
 

 

Figure 1-5 Chance for ln[(su/'
v)new] to be within the nominal 95% CI (Scenario A). 

 
Based on the above results, it can be concluded that the nominal 95% CI produced by the 

transformation model is meaningful because it has a large chance to include the actual site-specific 
ln[(su/'

v)new]. Moreover, the nominal 95% CI is close to genuine if the design site and the training 
sites belong to the same population. The following two scenarios exemplify the concept of “same 
population”: 

1. The design site is a Finland site, whereas the soil database is a Finland (regional) soil database 
that has a sufficient coverage. This is Scenario 1. For the Finland case, 10 sites in the regional 
database seem sufficient. 

2. The design site belongs to the general population, whereas the soil database is a general 
database with a sufficient coverage. This is Scenario A. In the above illustration, 50-100 sites 
in the general database seem sufficient. 

Although the nominal 95% CI provides a satisfactory estimate for the site-specific ln[(su/'
v)new], 

it is an interval estimate, not a point estimate. It is possible to obtain the point estimate, i.e., the point 
estimate = a*+b*ln(OCRnew), but certain inaccuracy is to be expected (see the prediction error in 
Figure 1-3). 

3. In what conditions will a transformation model produce meaningless results that have little to 
do with the actual site-specific design soil parameter? 

If the design site and the training sites do not belong to the same population, there is no 
guarantee that the nominal 95% CI derived from the training sites is genuine. If the design site 
belongs to the Finland population but the training sites are general with a sufficient number of sites, 
the nominal 95% confidence interval derived from the general database will be wider the genuine 
95% CI. When this happens, the nominal 95% CI is still meaning, but it is conservative (it has a very 
large chance to include the actual ln[(su/'

v)new]) and less effective. 
The nominal 95% CI may become completely meaningless if the design site and training sites 

belong to two populations occupying completely different regions in the OCR-(su/'
v) space. For 

instance, the design site contains fissured clays, whereas the training sites only contain non-fissured 
clays. 

Appendix 1A (Transformation Models Calibrated by Soil Databases) shows some transformation 
models calibrated by the F-CLAY/7/216 regional database and by the CLAY/10/7490 general 
database. These transformation models were originally developed in the literature, but their biases and 
variabilities are calibrated by the soil databases. Given the site-specific investigation information of a 
new design site, the point estimate and nominal 95% CI can be obtained from these transformation 
models (details given in Appendix 1A). The 95% CI estimate is meaningful in the sense that the actual 
design soil parameter will have a large chance to be within the confidence interval. Appendix 1A also 
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shows some transformation models for sands as well as their biases and variabilities calibrated by the 
SAND/7/2794 general database. 

 

1.3.5 Other transformation models 
 

For other transformation models, the qualitative conclusions obtained above remain unchanged. 
Consider the LI-St transformation model. Figure 1-6 shows how the actual chance for ln[(St)new] to be 
within the nominal 95% CI varies with the number of sites in the database. The left plot is for 
Scenarios 1 and 2, whereas the right plot is for Scenario A. Those plots are qualitatively similar to 
Figures 1-4 and 1-5. 

 

  
Figure 1-6 Chance for ln[(St)new] to be within the nominal 95% CI: (left) Scenarios 1 & 2; (right) 

Scenario A. 
 

1.3.6 Multivariate correlations 
 

We have illustrated how ln[(su/'
v)new] can be estimated based on the site-specific OCRnew. It was 

shown that the nominal 95% CI developed from a soil database can be useful and meaningful. 
However, it can happen that the resulting 95% CI is very wide so that ln[(su/'

v)new] is still very 
uncertain. Multivariate information is usually available in a typical site investigation. For instance, 
when undisturbed samples are extracted for oedometer tests to determine OCR, piezocone test (CPTU) 
may be conducted in close proximity. These multiple data sources are typically correlated to the 
design soil parameter, e.g., the undrained shear strength (su). Figure 1-7 shows the data points for the 
two transformations in the CLAY/10/7490 database. It is clear that both OCR and (qt-'

v)/'
v are 

positively correlated to su/'
v. These multiple correlations can be exploited to reduce the uncertainty in 

the design soil parameter. In the previous sections, we have illustrated a framework where the 
site-specific OCR information can be used to obtain the 95% CI for (su/'

v). This univariate 
framework is extended to account for multivariate framework, e.g., both OCR and (qt-'

v)/'
v are 

known, in the following. 
Suppose that a design engineer has a multivariate OCR-[(qt-'

v)/'
v]-(su/'

v) database. For each 
data point, OCR, (qt-'

v)/'
v, and su/'

v are simultaneously known. The engineer can adopt the data 
points in the database to develop the following multivariate transformation model: 

 

     u v t v vln s a b ln OCR c ln q +             (1-5.) 

 
where (a, b, c) are unknown coefficients to be estimated;  is the transformation error, modeled as a 
zero-mean normal random variable with standard deviation . (a, b, c) can be estimated by least 
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squares: 
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 (1-6.) 

 

 can be estimated as well: 
 

       
n 2

* * * *
u v i t v vi i

i 1

1
log s a b log OCR c log q

n 3


                 (1-7.) 

 

  
Figure 1-7 OCR-(su/'

v) and [(qt-'
v)/'

v]-(su/'
v) data points in the CLAY/10/7490 database. 

 
Based on the OCR-[(qt-'

v)/'
v]-(su/'

v) data points in CLAY/10/7490, the estimated 
* is equal 

to 0.46. With the OCR-(su/'
v) information from the same data points, the estimated 

* for the 
univariate OCR-(su/'

v) transformation model in Eq. (1-1.) is equal to 0.51. This shows that the 
transformation uncertainty in the multivariate model (Eq. 1-5.) is less than that in the univariate model 
(Eq. 1). The resulting 95% CI for ln[(su/'

v)new] from the multivariate model (to be presented below) 
will be also narrower than that from the univariate model. 

Now consider a new design site with known site-specific OCR and (qt-v)/'
v, denoted by 

OCRnew and [(qt-v)/'
v]new. The goal is to estimate its site-specific su/'

v, denoted by (su/'
v)new. Based 

on (a*, b*, c*, 
*), the design engineer can obtain two useful estimates for ln[(su/'

v)new]: (a) the point 
estimate a*+b*ln(OCRnew)+c*ln([(qt-v)/'

v]new) and (b) the nominal 95% CI estimate defined by: 
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       1* * * * T T
new t v v 0.975 new newnew

a b ln OCR c log q   t 1


            A A A A      (1-8.) 

 
where t0.975 is the 97.5% percentile for the Student-t distribution with (n-3) degrees of freedom; Anew = 
[1 ln(OCRnew) ln([(qt-v)/'

v]new)]T. 
The following leave-one-out exercise based on CLAY/10/7490 is adopted to verify whether the 

nominal 95% CI is genuine. There are 50 sites in the CLAY/10/7490 database containing 417 
multivariate OCR-[(qt-'

v)/'
v]-(su/'

v) data points. Each time, one site is treated as the design site, 
whereas the remaining 49 sites are treated as the training sites that are further used to obtain the 
nominal 95% CI. This is similar to Scenario A above. For the leave-one-out exercise, ln[(su/'

v)new] is 
actually known. Therefore, we can determine whether ln[(su/'

v)new] is within the nominal 95% CI. 
Among the 417 leave-one-out trials, ln[(su/'

v)new] is within the nominal 95% CI for 381 times. This 
means that the CI is in effect a 381/417 = 91.4% CI. The difference between 91.4% and 95% may be 
partially due to the statistical uncertainty. It is also possible that 50 sites are not yet sufficient for the 
convergence. Figure 1-8 shows how the actual chance for ln[(su/'

v)new] to be within the nominal 95% 
CI varies with respect to the number of sites in the database. The convergence behavior in this figure 
is similar to those in Figures 1-4 to 1-6. It is possible that the qualitative conclusions obtained for the 
univariate framework above still apply to the multivariate framework. 

 

 
Figure 1-8 Chance for ln[(su/'

v)new] to be within the nominal 95% CI (multivariate scenario). 
 

1.4 CONCLUSIONS 
 
A transformation model is frequently used to estimate the design soil parameter. However, it is not 
clear what the estimated design soil parameter really means. A possible concern for such a soil 
parameter estimate is that a transformation model is constructed by non-site-specific data points. Can 
these non-site-specific data points be used to derive any meaningful site-specific estimate? The 
purpose of this report is to address this question and to verify the significance of this design soil 
parameter estimate based on the so-called “leave-one-out” design exercise. 

The leave-one-out exercise emulates the process of estimating the design soil parameter: the 
design soil parameter for a “design site” is estimated based on the transformation model constructed 
by a set of “training sites”. The design site is not within the training sites. Basically, a large soil 
database with N sites is divided into two subsets: one subset only contains the design site, and the 
other subset contains N-1 training sites. A transformation model is first calibrated by the training sites, 
then it is adopted to estimate the design soil parameter for the design site. This process is repeated for 
all data points in the soil database. Because the actual value of the design soil parameter for the design 
site is in fact known, the performance and significance of the design soil parameter estimate obtained 
from the transformation model can be verified. In this report, we focus on the 95% confidence interval 
(CI) estimate obtained from the transformation model. This 95% CI may or may not be the genuine 
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95% CI, so it is called, in this report, the “nominal” 95% CI. 
The results show that the nominal 95% CI estimate obtained from the transformation model is 

meaningful, albeit the transformation model is derived from non-site-specific data points. The concept 
of “population” in statistics is central to our conclusions. It is concluded that as long as the design site 
and training sites belong to the same population, the nominal 95% CI estimate obtained from the 
transformation model is close to a genuine 95% CI, meaning that the chance for the actual design 
parameter to be within the nominal 95% CI is close to 95%. A radical view is that only the data points 
at the design site (site-specific data points) can be used to derive the design soil parameter and that all 
non-site-specific data points are irrelevant. Nonetheless, the findings in this report suggest that this 
view may be incorrect. In fact, non-site-specific data points can be still useful if they are in the same 
“population” for the design site. This means that if the design site is a Finland site, the transformation 
model developed by Finland training sites (i.e., a Finland database) can be useful and meaningful in 
the sense that the resulting nominal 95% CI is close to a genuine 95% CI. 

A more controversial scenario is that the design site and training sites do not belong to the same 
population, e.g., the design site is a Finland site, yet the training sites are general (global) sites. In the 
case that the design site population is a subset of the training site population (e.g., the Finland 
population is a subset of the general population), the results in this report suggest that the resulting 
nominal 95% CI is no longer a genuine 95% CI. Moreover, the nominal 95% CI is wider than the 
genuine 95% CI. In one previous illustration in this report (Scenario 2), the chance for the actual 
design parameter to be within the nominal 95% CI is close to 95% is 99.1%. Yet, this does not suggest 
that the nominal 95% CI is completely useless and meaningless. Instead, this only suggests that the 
nominal 95% CI is less effective and more conservative. 

An even worse scenario is that the design site and training sites not only belong to different 
populations but also the design site population is not a subset of the training site population. For 
instance, the design site is with fissured clays, yet the training sites do not contain fissured clays. 
When this occurs, the resulting nominal 95% CI can become useless and meaningless. 

Appendix 1A shows some transformation models calibrated by some soil databases. The 
guideline for deriving the point estimate and 95% CI estimate is also provided. 
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Appendix 1A: Transformation models calibrated by soil databases 
 
This appendix presents the calibration results for some transformation models in the literature. The 
calibrated models can be used to develop the point estimate and 95% confidence interval (CI) for the 
design soil parameter. The bias and variability for the clay transformation models are calibrated by the 
F-CLAY/7/216 and CLAY/10/7490 databases (see Table 1A-1), whereas the sand transformation 
models are calibrated by the SAND/7/2794 database (see Table 1A-2). 

To explain the significance of the bias and variability for a transformation model, consider the 
first model in Table 1A-1, the LI-(su

re/Pa) model proposed by Locat and Demers (1988). The actual 
target value is su

re/Pa, and the predicted target value is 0.0144LI-2.44. For each data point in the 
database with simultaneous knowledge of (LI, su

re), (actual target value)/(predicted target value) = 
(su

re/Pa)/(0.0144LI-2.44) can be computed. The sample mean of this ratio is called the bias factor (b) 
for the transformation model. The sample coefficient of variation (COV) of this ratio is called the 
COV () of the transformation model. To be specific, 
 
Actual target value = predicted target value b   (1A-1) 

 
where b is the bias factor (b = 1 means unbiased), and  is the variability term with mean = 1 and 
COV = . If  = 0, there is no data scatter about the transformation model, i.e. the prediction is 
single-valued or deterministic, rather than a distribution. The calibrated bias factors and COVs for all 
clays and sand transformation models are shown in the last two columns of Tables 1A-1 and 1A-2, 
respectively. The number of data points used for each calibration is listed in the table (‘n’ in the third 
column). 

The calibrated bias and COV of a transformation model can be adopted to develop the point 
estimate and 95% CI, described as follows. Consider again the LI-(su

re/Pa) model, let the site-specific 
LI value for the new design site be denoted by LInew, the point estimate for (su

re/Pa)new is simply 
b(predicted target value) = b(0.0144LInew

-2.44). By assuming  to be lognormal, the 95% CI for 
(su

re/Pa)new can be expressed as 
 

    
    

2

2

2.44
new 2

2

b predicted target value
exp 1.96 ln 1

1

b 0.0144 LI
exp 1.96 ln 1

1




    

 

 
     

 

 (1A-2) 

 
If the design site is a Finland site, the chance for the actual target value to be within the above 

nominal 95% CI (with b and  calibrated by F-CLAY/7/216) should be close to 95%. If the design site 
is a general site, the chance for the actual target value to be within the above nominal 95% CI (with b 
and  calibrated by CLAY/10/7490) should be close to 95%. The numbers of calibration data points (n) 
for some sand transformation models are quite limited (see Table 1A-2). For those transformation 
models, their nominal 95% CI may not be genuine. 
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Discussion 1A – Sedimentary formations with heterogeneous 3D architecture 
 
Celeste Jorge (Laboratório Nacional de Engenharia Civil - LNEC, Lisboa - Portugal) 
 
Geological formations formed in a basin or a lacustrine environment, with endorheic regimen, are 
worldwide distributed, and are composed by continental detritic materials. These materials were 
deposited on a band, more or less wide, near the basin bank, giving rise to multiple alluvial fans. 
These geological formations are predominated by coarse materials (such as sandstones and 
conglomerates) and also by intermitted layers of calcareous materials (such as limestones and marls). 
The coarse materials are deposited during/immediately after torrential climatic periods, whereas the 
calcareous ones are deposited during calm periods. Furthermore, the basins were invaded successively 
by the ocean (advancements and retreatments of sea level over long geological periods). The episodes 
of advancements and retreatments of the sea level caused the deposition process highly variable and 
produce geological formations with significant three-dimensional (3D) heterogeneity. 

The irregular structure and texture of these geological formations make it almost impossible to 
predict their spatial distribution. This feature is reflected in the great heterogeneity of the geotechnical 
characteristics. Thus, the use of probabilistic models for extrapolating parameters at unexplored 
locations may introduce a large error. Therefore, it is not advisable to use this type of extrapolation 
approach in such geological formations. 
 
Reply to Discussion 1A 
 
Jianye Ching 
 
Celeste correctly pointed out that caution should be taken when parameters are extrapolated at 
unexplored locations. The highly spatially variable geological formations mentioned by Celeste serve 
as a very good example why such caution should be taken. I agree very much with Celeste. However, 
the development and implementation of a transformation model do not involve in spatial 
extrapolation. 

To explain why the development of a transformation model does not involve in spatial 
extrapolation, let us consider the (N1)60- model in Figure 1-1 as an example. Any data point in this 
figure is based on the test results of two sands in the literature. One sand is tested by the standard 
penetration test in situ to derive its (N1)60, whereas another sand sample is extracted using the ground 
freezing method and tested in laboratory to obtain its . More importantly, the spatial locations of 
these two sands are typically very close, e.g., at the same depth and with few meters apart horizontally, 
to minimize the effect of spatial variation. As a result, these two sands are practically considered as 
the “same” sand, and the effect of spatial variation does not really enter into the data points in Figure 
1-1. 

The implementation of a transformation model does not involve in spatial extrapolation, either. 
For instance, suppose that an engineer would like to implement the transformation model (the blue 
dashed line in Figure 1-1) to estimate  for a sand at depth of 10 m with the knowledge of (N1)60 at 
the same depth. This process does not involve spatial extrapolation, either, because 10 m is the only 
depth of concern. 

However, extrapolation can still happen when implementing a transformation model, but the 
extrapolation is not in space but in soil/rock type. For instance, the data points in Figure 1-1 are 
mostly from siliceous sands and there is no calcareous sand. If an engineer would like to implement 
the transformation model in Figure 1-1 to estimate  for a calcareous sand, extrapolation may happen. 

The geological formations example mentioned by Celeste is indeed challenging in the aspect of 
spatial variability. However, transformation models are not for modeling and predicting spatial 
variability. The Discussion Group led by Dianqing Li (Incorporating spatial variability into 
geotechnical reliability based design) is more relevant to the subject of spatial variability. 
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Chapter 2 Evaluation and Consideration of Model Uncertainties in Reliability 

Based Design 
 
 

Lead discusser: 

Kerstin Lesny 

kerstin.lesny@hcu-hamburg.de 

Discussers (alphabetical order): 

Sami Oguzhan Akbas, Witold Bogusz, Sébastien Burlon, Giovanna Vessia, Kok-Kwang 

Phoon, Chong Tang, Limin Zhang 
 
 

2.1 INTRODUCTION 
 

The quality and reliability of geotechnical design depends among other aspects on the quality of the 
chose3n design method. This can be a simple analytical or empirical equation or a sophisticated 
numerical model with different degrees of complexity and accuracy in modeling the behavior of a 
geotechnical structure. However, exact modeling of the real behavior is impossible and the deviation 
of the predicted from the real behavior is expressed by the model uncertainty. According to e.g. 
Nadim (2015) model uncertainty is of epistemic nature as it is based on the simplifications, 
assumptions and approximations made in the respective design model. It therefore can be reduced by 
improving the model. Nadim (2015) also used the term transformation uncertainty for the 
uncertainties associated with the model as the model transfers input parameters to output parameters. 
A recent summary of geotechnical model uncertainty was presented by Dithinde et al. (2016). 

It should be explicitly noted, that model uncertainty in the context of this contribution and 
according to the definition given above only refers to the uncertainties of the applied calculation 
procedure or method. It shall not consider uncertainties from the overall geotechnical model which 
also includes the definition of the ground model and the related soil mechanical parameters used in 
the design. However, the model uncertainty often is intrinsically tied to these uncertainties as will be 
shown in the following. 

For the geotechnical engineering design practice, as considered by Eurocode 7, calculation 
models in many countries were calibrated on the basis of an overall factor of safety resulting from 
previous standards and past experience leading to design approaches that are often regarded as being 
conservative. In such cases failures of geotechnical structures are usually attributed to insufficient 
ground investigations or external factors (human error, overloading, water levels exceeding design 
assumptions, etc.), but not to an insufficient calculation model. However, derivation of partial factors 
with the aim of achieving a consistent reliability level within geotechnical design requires the 
separation of different sources of uncertainties and therefore establishes a need to analyze the 
uncertainties associated with the respective design methods. 

This chapter presents the current status of model uncertainty assessment for different types of 
geotechnical structures and calculation models based on a discussion among members of the ISSMGE 
technical committees TC 205 and TC 304. 

 

2.2 PROCEDURES FOR MODEL UNCERTAINTY ASSESSMENT 
 

The need for separate assessment of model uncertainties was lately emphasized by Eurocode 7 code 
drafters involved in the current revision process of the Eurocodes. Following this postulation, for 
geotechnical design according to Eurocode 7 or other standards utilizing load and resistance factor 
design (LRFD), a pre-defined target reliability shall be achieved by the combination of partial factors 
and model factors. The latter shall be used to calibrate specific calculation models to provide the same 
level of confidence in the validity of the prediction for possible design situations prior to the use of 
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partial safety factors. It further allows the engineers to better appreciate the reliability of the applied 
calculation models, and thus improve their designs. 

In this regard, Phoon and Ching (2015) argued that simplified reliability based design (RBD) 
methods such as LRFD with constant factors can only cover the design situations inside the domain 
the factors have been calibrated for. For other situations the target reliability may not necessarily be 
reached. Consequently, the evaluation of model uncertainties must also reflect all possible design 
situations to be covered by the code. 

The way to introduce model uncertainties into design very much depends on the character of the 
applied design method or approach. Consequently, various procedures for model uncertainty 
evaluation and the associated difficulties are outlined in the following. 

 

2.2.1 Model uncertainty expressed by model factors 
 

For simple analytical, empirical or semi-empirical design methods, which result in a unique design 
quantity, model uncertainties can be considered relatively straightforward by a model factor according 
to Eq. 2-1, where the model factor or bias  is defined as the ratio of a measured (e.g. in a load test) 
to a calculated quantity X. 

 

meas calM X X                                                                  (2-1) 

 
The quantity X can be a load, a resistance, a displacement, etc. The model factor itself is not 

constant, but a random value. Hence, it can be introduced in reliability analyses, where it is usually 
assumed to be log-normally distributed with a mean and a COV to be defined (e.g. Phoon and 
Kulhawy 2005; Juang et al. 2012). In this context, a mean close to 1.0 would represent the ideal 
solution, whereas the COV represents the scatter and therefore the uncertainty in the calculation 
model. Hence, by introducing a model factor into the design a certain reliability of the prediction 
using a specific calculation model can be provided, thus ensuring that there is only a p% probability 
that the real value is lower than calculated one (Figure 2-1). 
 

 
Figure 2-1 Model bias implemented into geotechnical design according to Eurocode 7 (courtesy of 

Witold Bogusz). 
 
Literature review revealed that the simple definition in Eq. 2-1 has been often used for model 

uncertainty evaluation for 
(1) Axially loaded piles (settlement prediction or bearing capacity prediction) 
(2) Spread foundations (settlement prediction or bearing capacity prediction) 
Here, the design problem can be reduced to one single quantity which is the result of the applied 

calculation model, e.g. the pile bearing capacity or the foundation bearing capacity. In case of pile 
foundations pile loading and pile capacity are usually treated as independent quantities, hence the bias 
can be clearly defined (though depending on the type of the prediction model). In the case of shallow 
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foundations the bearing resistance is not an independent quantity as it depends on the type of load. 
Therefore, the bias cannot be unique. 

 

2.2.2 Model uncertainty prediction for more complex design situations 
 

For more complex design situations or design models not resulting in a unique design quantity or 
where results have to be interpreted from the calculations (e.g. FEM calculations) model uncertainty 
prediction may be based on representative quantities which properly characterize the performance as 
well as the design of the structure. 

For example, Zhang et al. (2015) chose the top deflection as the representative quantity for the 
design of a cantilever wall and evaluated the model uncertainty of the mobilized strength design 
(MSD) proposed by Osman and Bolton (2004). However, for more complex braced excavations, it 
may be necessary to consider the maximum deflection and the maximum bending moment – both 
quantities do not appear at a fixed depth location and change with the excavation stage. It is 
worthwhile to note that the maximum deflection and the maximum bending moment are likely to be 
correlated and there is a need to consider how the model uncertainties related to both quantities can be 
updated based on monitoring which is routinely carried out using inclinometers. 

Laterally loaded pile design is driven by the anticipated flexibility of the pile which determines 
the type of calculation model. For rigid piles evaluation of the model uncertainty related to the bearing 
capacity prediction is relatively straightforward and follows the procedure outlined in section 2.2.1. 
Phoon and Kulhawy (2005), for example, analyzed the model uncertainties of different earth pressure 
models by calculating the ultimate lateral and moment capacity which were the design quantities. 

For flexible piles it is questionable, if the pile head displacement (or rotation) as a single 
representative quantity is sufficient or if the whole deflection curve is a better choice. On the other 
hand, it seems possible to compare measured and calculated load-displacement curves, but only very 
few load tests on laterally loaded piles are available. Such a work has been presented for axially 
loaded piles by Abchir et al. (2016) to assess the uncertainty of t-z curves obtained from 
pressuremeter test results. 

A similar problem arises for settlement prediction of footings. In case of single rigid footings a 
representative settlement and rotation can be defined. In case of flexible footings this is at least 
difficult. 

 

2.2.3 Model uncertainty assessment by reliability based sensitivity analyses 
 

Another procedure to assess the model uncertainty of a given design method is to perform a RBD 
based sensitivity analysis to evaluate the relative influence random parameters have on the reliability 
index or the probability of failure, respectively, when adopting a specific design method. Such a work 
was proposed e.g. by Teixeira et al. (2012) who analyzed the bearing capacity of piles calculated by 
an empirical method directly correlating the blow counts NSPT from standard penetration tests (SPT) 
to the pile capacity. The sensitivity analysis was based on calculations using the first order reliability 
method (FORM) and Monte Carlo Simulations (MCS). The soil variability expressed by the blow 
count NSPT, model factors for base and shaft resistance of the pile and factors for load uncertainties 
were considered as random variables with statistical parameters adopted from literature. The resulting 
reliability indices were compared for different scenarios in which the different sources of uncertainties 
were considered or not. Such a procedure allows an assessment of the importance of different sources 
of uncertainties within design. For the investigated design method it was shown that model 
uncertainties were the predominant sources of uncertainties emphasizing the importance for 
appropriately considering them in design. 

 

2.2.4 Interpretation of load-displacement curves for model uncertainty assessment in the 

serviceability limit state 
 

At the ultimate limit state, a consistent load test interpretation procedure should be used to produce a 
single “measured capacity” from each measured load-displacement curve. The ratio of the measured 
capacity to the calculated capacity is called a model factor as defined in Eq. (2-1). The same approach 
applies to the serviceability limit state (SLS). The capacity is replaced by an allowable capacity that 
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depends on the allowable displacement. The distribution of the SLS model factor is established from a 
load test database in the same way. Notice that the SLS model factor has to be re-evaluated when a 
different allowable displacement is prescribed. If the allowable settlement is treated as a random 
variable in the serviceability limit state, a more general approach involving fitting measured 
load-displacement data to a normalized hyperbolic curve is recommended as detailed below: 
 

m

Q y

Q a by



                                                                 (2-2) 

 
in which Q = applied load, Qm = failure load or capacity interpreted from a measured 
load-displacement curve, “a” and “b” = curve-fitting parameters, and y = pile butt displacement. Note 
that the curve-fitting parameters are physically meaningful, with the reciprocals of “a” and “b” equal 
to the initial slope and asymptotic value of the hyperbolic curve, respectively.  

The curve-fitting equation is empirical and other functional forms can be considered (Phoon and 
Kulhawy 2008). However, the important criterion is to apply a curve-fitting equation that produces the 
least scatter in the measured normalized load-displacement curves. Each measured load-displacement 
curve is thus reduced to two curve-fitting parameters. Based on “a” and “b” statistics estimated from 
the load test database (Table 2-1), one can construct an appropriate bivariate probability distribution 
for (a, b) that can reproduce the scatter in the normalized load over the full range of displacements. 
Details are given in Phoon and Kulhawy (2008). It is evident that this approach can be used in 
conjunction with a random allowable settlement. This approach has been applied to various 
foundation types (Phoon et al. 2006, Phoon et al. 2007, Akbas & Kulhawy 2009, Dithinde et al. 2011, 
Stuedlein and Reddy 2013, Huffman and Stuedlein 2014, Huffman et al. 2015). 
 

Table 2-1 Summary of statistics for hyperbolic parameters 

Reference Foundation type Load Soil type N 
a (mm) b 

ρ 

Mean COV Mean COV 
Phoon et 
al.(2006) 

ACIP (D/B>20) C Sand 40 5.15 0.6 0.62 0.26 -0.67 

Phoon e al. 
(2007) 

Spread footing U Clay+sand 85 7.13 0.65 0.75 0.18 -0.24 
Drilled shaft U Clay+sand 48 1.34 0.54 0.89 0.07 -0.59 

Pressure-injected footing U Sand 25 1.38 0.68 0.77 0.27 -0.73 

Dithinde et al. 
(2011) 

Driven pile C Sand 28 5.55 0.54 0.71 0.14 -0.78 
Bored pile C Sand 30 4.1 0.78 0.77 0.21 -0.88 
Driven pile C Clay 59 3.58 0.57 0.78 0.11 -0.89 
Bored pile C Clay 53 2.79 0.57 0.82 0.11 -0.8 

Stuedlein and 
Reddy (2013) 

ACIP C Sand 87 0.16 0.49 3.4 0.23 -0.73 

Huffman and 
Stuedlein 

(2014) 
Spread footing C 

Reinforced 
Clay 

30 2 0.79 1.15 0.25 — 

Huffman et al. 
(2015) 

Spread footing C Clay 30 1.3 0.53 0.7 0.16 -0.95 

Tang et al. 
(2017b) 

Square foundation C Sand 64 1.47 0.4 0.72 0.17 -0.76 

Tang and Phoon 
(2017b) 

Small-diameter helical 
pile (square shaft) 

C Clay 53 5.54 0.36 0.78 0.14 -0.46 
C Sand 49 5.84 0.27 0.76 0.14 -0.36 

Large-diameter helical 
pipe pile (single-helix) 

C Clay 11 6.2 0.5 0.83 0.13 -0.85 

Tang and Phoon 
(2017b) 

Large-diameter helical 
pipe pile (multi-helix) 

C Clay 18 5.62 0.59 0.83 0.12 -0.88 

Tang and Phoon 
(2017c) 

Steel H-pile 
C Clay 47 2.77 0.61 0.81 0.11 -0.72 
C Sand 53 5.35 0.71 0.68 0.21 -0.73 
C Layered 51 3.9 0.74 0.74 0.14 -0.76 
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Note:  
(1) The bivariate load-settlement model used by Huffman and Stuedlein (2014), Huffman et al. (2015), and 

Tang et al. (2017b) is Q/Qm=(s/B)/[a+b(s/B)]. 
(2) The model factor in Stuedlein and Reddy (2013) is transformed model factor, namely, at=a×(B/D) and 

bt=b×(D/B)0.5. 
(3) ACIP=augered cast-in-place pile, D=embedment depth, B=foundation width or diameter, 

C=compression, U=uplift, N=number of load tests, ρ=correlation between the hyperbolic parameters (a, 
and b). 

 

2.2.5 Difficulties in model uncertainty evaluation 
 
Prediction of model uncertainties based on measurements of the real behavior as provided by the 
simple definition given in section 2.2.1 reveals some fundamental problems: 

(1) The bias cannot be separated from the inherent variability of parameter values used within the 
model. 
The inherent variability of parameters refers on one the hand to the way they are determined 
(from theoretical formulas, indirect correlations or direct measurements). On the other hand, 
the spatial variability of soil characteristics plays an important role. 

Fenton and Griffith (2005) showed in an analysis of the reliability of traditional retaining 
wall design, assuming one particular failure mode, how the spatial variability of the soil 
affects the failure mechanism which in turn affects the uncertainty of the chosen design 
method. On the other hand, Teixeira et al. (2012) in their study on axially loaded piles showed 
that soil variability was not as important as expected. One may conclude that the different 
results are related to the failure modes assumed in both cases. In the pile design the shaft 
friction and the end bearing of the pile are not or not as much affected by soil variability as in 
case of the retaining wall design where large failure zones in the soil have to be considered. 
The same applies e.g. to the design of shallow foundations. Hence, especially in the case 
where large failure zones are involved, the model uncertainty is intrinsically tied to the 
uncertainties related to the soil characteristics and cannot be separated. 

(2) The bias cannot be separated from measurement errors. 
Measurement errors are related to the experimental device used to measure the variables of 
the model and other related errors. On the other side, especially in the case of complex 
numerical calculations the prediction is also affected by other sources of uncertainties related 
to the modeling itself which indirectly contribute to the model uncertainty (e.g. user 
experience, choice of constitutive models, mesh generation procedures). 

It may be concluded that there is no unique model uncertainty. So as already stated 
above, the evaluation of model uncertainties and the derivation of model factors shall cover 
all possible design situations. 

(3) The bias cannot be separated from definition and determination of Xmeas from the test (e.g. 
consistency of failure criteria and its application to the test results). 
Phoon and Kulhawy (2005) demonstrated using a large load test database that the mean of the 
model factor for the lateral capacity of a rigid drilled shaft is a function of the capacity 
interpretation method (lateral or moment limit, hyperbolic limit). To characterize model 
uncertainties, a consistent load test interpretation procedure should be used to produce a 
single “measured” quantity Xmeas from the test. 

(4) The model factor given by Eq. 2-1 could be a function of input parameters. 
Ideally, a theoretical model should capture the key features of physical processes, and the 
remaining difference between the model and reality should be random in nature as it is caused 
by numerous minor factors that were left out of the model. In practice, however, the 
theoretical modelling of physical processes generally entails making unrealistic assumptions 
and simplifications physically and geometrically just to create a useable and oftentimes an 
analytically tractable model. In this context, the ratio M between the measured value Xmeas 
and the calculated value Xcal may not be random in the sense that it is systematically affected 
by input parameters such as the problem geometry and soil mechanical properties. Examples 
are given by Zhang et al. (2015) (see Figure 2-2), Phoon and Tang (2015, 2017) (see Figure 
2-3), Tang and Phoon (2016, 2017a), and Tang et al. (2017a). 

(5) Finally, the model factor approach reaches its limits where obvious deficiencies in the design 
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model exist. 
An example of this may be the pile design for combined loading which is a typical design 
situation for offshore pile foundation structures. Available design methods account only for 
one load component (i.e. axial or lateral). The interaction of the load components is usually 
neglected arguing that lateral loading affects predominantly the upper part of the pile whereas 
axial loading mobilizes resistances predominantly in greater depths. The uncertainties related 
to such a design procedure can hardly be addressed by simple model factors. 
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Figure 2-2 Variation of model factor M for MSD calculating the top deflection of a cantilever wall 
with input parameters (Zhang et al. 2015). 

 

2.3 OVERVIEW OF EXISTING WORK 
 

2.3.1 Shallow foundations 
 

Appendices 2A and 2B summarize some work on model uncertainty prediction for bearing capacity 
calculation of shallow foundations. 
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Model uncertainty was defined in Appendix 2A by  = Xmeas/Xcal as in Eq. 2-1 and by 
1/ = Xcal/Xmeas in Appendix 2B. The work presented in Appendix 2B deals with vertically loaded 
foundations only, whereas the work in Appendix 2A considers combined loading as well. Both used 
extensive databases including field tests only (Appendix 2B) and laboratory and field tests (controlled 
and natural soil conditions – Appendix 2A). 

Both studies show an influence of the footing size on the model factor or bias (possible effect of 
model scale), but this trend is not clear. In Appendix 2B the bias according to Eq. 2-1 decreases for 
greater footing width. In Appendix 2A a similar trend has been found for footings in natural soil 
conditions whereas the trend in controlled soil conditions is different (increase of bias for greater 
footings), see Figure 2-4. Hence, this confirms the earlier statement that the model uncertainty is 
affected among others by the variability of the soil especially under natural conditions and/or the 
derivation of the design parameters (here shear strength). 
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Figure 2-3 Variation of model factor M for Eurocode 7 approach calculating the bearing capacity of 

strip footings on sand under positive combined loading with input parameters (Phoon and Tang 2017). 
 
Appendix 2A also reveals that the bias is not unique but depends on the type of loading. The 

research presented in Appendix 2A also discusses the importance of defining an appropriate failure 
criterion to evaluate the failure load from load-settlement curves. 

Appendices 2B and 2C summarize some work on model uncertainty evaluation of settlement 
predictions. 

The work presented in Appendix 2B is based on an extensive database of 426 case histories to 
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assess the model factor 1/ = Xcal/Xmeas (where X is the settlement) for various calculation methods. 
The model uncertainty itself was considered as a random variable. For those cases where a complete 
load-settlement curve was available instead of a single response point, the load and settlement values 
at the elastic limit were used to estimate the accuracy of the settlement estimation methods (see 
reference in Appendix 2B for definition of elastic limit). The study reveals that the overall accuracy of 
all methods is very poor with a very high COV and a high percentage of cases in which the calculated 
settlements exceeds the measured ones. It is also stated that a log-normal distribution can be assumed 
for the model factor 1/

Appendix 2B also includes results of another study which was performed using a selection of 
methods for predicting settlements based on SPT test results. The analysis procedure and the main 
conclusions are similar to the first study. Both studies investigated the influence of the inherent 
variability of soil properties, construction variabilities, and measurement errors on the model factor 
statistics related to instrumented structures and load tests. 

 

Vertical Centric Loading 
n = 172; mean bias = 1.68, COV = 0.299 

Natural soil conditions 
(f from SPT-N counts) 
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Figure 2-4 Biases of bearing capacity prediction for footings under vertical-centric loading 
differentiated according to soil conditions and model scale (Paikowsky et al. 2010). 

 
Appendix 2C uses the same definition of the model factor as in Appendix 2B, using the variable 

R = 1/ = Xcal/Xmeas (where X is the settlement), i.e. the reciprocal of Eq. 2-1. In the presented study a 
rigid footing under pure vertical loading was considered. To interpret the model uncertainty the 
following quantities were introduced: 

(1) Accuracy: average value of R for all the cases in a database 
(2) Reliability: percentage of the cases for which R ≥ 1 
These quantities were combined in the so-called ranking distance RD: 

 

     22 RSDRmean1RD   (2-3) 

 
The ranking distance considers the mean and the standard deviation (SD) of the model and can be 
visualized as a beam from the origin of the safe region, i.e. from the ideal value defined by a mean of 
1.0 and a standard deviation of 0.0 as displayed in Figure 2-5. 

In this figure, the deviation (bias) of the calculated mean of a dataset (shown as bullets) to its 
ideal value of 1.0 describes the accuracy of the applied design method whereas a standard deviation 
greater than zero describes its scatter around the mean value, thus its precision. This provides an 
assessment of the uncertainties related to the derived model factor itself which is of special 
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importance also if constant model factors finally need to be established for application in LRFD as 
outlined before in section 2.2.1 (see also Figure 2-1). Further on, entropy and the relative entropy (like 
the variance) are introduced to measure the dispersion of the R value. 

Appendix 2C then presents a procedure which is based on a study of nine settlement prediction 
methods that all used SPT data to derive soil parameters. In this procedure, curves of different levels 
of probability for settlement target values can be drawn for the different formulas. From these curves 
the engineer may derive the exceedance probability of a certain value of the measured settlement, 
provided that the settlement value is known. 
 

 
 

Figure 2-5 Mean versus standard deviation plot to be used in reliability based shallow foundation 
design with respect to settlement (see Appendix 2C). 

 

2.3.2 Axially loaded pile foundations 
 
Appendix 2D addresses model uncertainties of the bearing capacity prediction of axially loaded piles. 
Based on Bauduin (2002, 2003) it summarizes typical procedures to evaluate model uncertainties 
which are commonly expressed by Eq. 2-1. In this regard, Figure 2-6 highlights significant 
uncertainty sources within pile design. 

Appendix 2D states that model uncertainty prediction for piles shall be founded on databases of 
static pile load tests which are especially useful also for analysing new pile types or calculation 
models. It is emphasized that the quality of the input data is of significant importance. In this regard 
the quality of site investigations (field or laboratory tests) and the test performance (testing depth, test 
load, measured quantities, e.g. separate measurement of shaft friction and end bearing resistance) are 
discussed. Appendix 2D also addresses the problem of load tests not performed to failure and the 
possibilities and limitations of applying extrapolation techniques to determine the failure load in the 
ultimate limit state (ULS) from a load-settlement curve of non-failed tests. 
 

2.3.3 Retaining structures 
 
Hsiao et al. (2008) evaluated the ground settlement induced by neighbouring excavations. Similar to 
the study of Teixeira et al. (2012) the model uncertainty was considered by a model factor according 
to Eq. 2-1 applied to the settlement. The model factor was introduced as a random variable in a 
reliability analysis using FORM with statistical parameters adopted from literature. The analysis 
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showed that the calculated settlement was highly sensitive to the model factor. 
In this study, the model factor was later updated by back-calculation from on-site measurements 

during several construction stages using the Bayesian updating technique, so that the calculated 
ground settlement finally approached the measured one. By doing so, the updated model factor 
reflects all other influences from the respective site, i.e. it is site-dependent and cannot (necessarily) 
be transferred to other design situations. 

A similar study was performed by Juang et al. (2012) who evaluated the damage potential of 
neighbouring buildings due to excavation activities. The so-called damage potential index (DPI) was 
derived from the angular distortion and the lateral strain in the building due to excavation (DPI load) 
which was compared to a limiting value (DPI resistance). Model factors were applied to both, DPI 
load and DPI resistance, and were assumed to be log-normally distributed. The DPIs were derived 
from on-site measurements. Hence, model uncertainties only reflect the current status of information 
for the specific case. Consequently, Juang et al. (2012) used the term apparent model factor. This 
study also showed a high sensitivity of the reliability analysis for model uncertainties. 

A lot of other work could be analysed in order to give additional information. For example, the 
syntheses provided by Long (2001) or Moormann (2004) include many information about the 
behaviour of retaining walls. As outlined before the main difficulty remains the representative 
quantity to be considered, i.e. the maximum wall deflection, the wall deflection at the top of the 
retaining wall or any other. 

 

2.4 USE OF DATABASES 
 

In general, definition and evaluation of model uncertainties must be seen within the context of the 
applied procedure and the related complexity (RBD, LRFD – research work or practical application). 
In this regard, comprehensive data bases with well documented field and laboratory test data can be a 
good tool to evaluate model uncertainties if it is possible to express them by a model factor or bias as 
in Eq. 2-1. Therefore, this procedure is relatively popular and has been frequently used before. Phoon 
and Kulhawy (2005) give a short overview about using databases for model uncertainty evaluation. 

Bauduin (2002) distinguishes three approaches to use databases in model uncertainty prediction 
with reference to pile design (see also Appendix 2D) leading to different quality levels in the derived 
model factors: 

(1) very high level of detail in the analysis, each type of pile can be calibrated for specific soil 
conditions 

(2) lower level of detail grouping similar piles and soil conditions together 
(3) larger generalization, treating all data as one sample, resulting in one calibration factor for 

the calculation method 
Databases typically include model and/or prototype field or laboratory tests under natural or 

controlled soil conditions for a specific design problem. Phoon and Kulhawy (2005) emphasized the 
use of scaled laboratory tests under controlled conditions (i.e. controlled loading, controlled 
preparation of uniform soil bed etc.) as the uncertainties resulting from the soil characteristics can be 
minimized. However, they further stated that such kind of tests possibly do not lead to representative 
mean model factors as they are not free of other extraneous uncertainties as well. 

Field tests such as pile load tests have the advantage that they are conducted in real and diverse 
site conditions in full scale (no scale effects). But as mentioned above they are more or less affected 
especially by the spatial soil variability. Hence, only a combination of field and laboratory model tests 
allows reliable predictions of model uncertainties. 

The main problem of databases often is the limited number of tests coming from very different 
sources each covering only a limited range of possible design situations. One needs to keep in mind 
that the application of the derived model uncertainty beyond the boundaries of the given database 
must be verified (ideally by more appropriate tests). 

On the other hand, this requirement also depends on the complexity of the design and the degree 
of simplification implied in the respective design method, which determines the transferability to 
other boundary conditions. According to Phoon and Ching (2015) a sufficient number of tests is 
especially important also if parameters show influential statistics. This requires a subdivision of the 
database into segments with available data preferably being evenly distributed among each segment.  

Another concern is the validity, applicability and uniqueness of failure criteria for the definition 
of the ULS (or the serviceability limit state (SLS)) from the test result (e.g. the load-displacement 
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curve). Especially field tests are often not run to failure. Extrapolation techniques may be considered, 
but their application is difficult (e.g. Paikowsky and Tolosko 1999; Phoon and Kulhawy 2005). Also 
in field tests the measured load-displacement curves often do not show a clear peak, i.e. failure is 
difficult to be interpreted and not all failure criteria lead to consistent results (see e.g. Paikowsky et al. 
2010). 

 

 

 
Figure 2-6 Pile design procedure with most significant uncertainty sources (see Appendix 2D). 

 
In summary, the following aspects have been identified to be important for establishing databases 

that can properly be used for evaluating model uncertainties: 
(1) Availability of data (often propriety concerns) 
(2) Minimum representative number of tests for a specific design constellation 
(3) All geometric and geotechnical ranges according to possible design situations covered 
(4) Test scale (prototype tests and scaled model tests to evaluate scale effects) 
(5) Detailed information on geometry and installation procedure 
(6) Detailed information on applied loading 
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(7) Detailed information on soil variability at the test site (especially related to field tests); 
quality and quantity of available soil information; test type for determination of soil 
parameters including test analysis and interpretation of results; influence of local or regional 
soil geology 

(8) Detailed information on performance, processing and evaluation of load tests (in the field, in 
the laboratory) 

(9) Detailed information on the failure criteria applied to define the ULS/SLS in the test 
Other problems affecting the quality of the database input and its use are: 
(1) Effect of nonlinearities in the limit state equations for extrapolation of derived model factors 

to other design situations 
(2) Uncertainties in the prediction of loading 
Furthermore, personal aspects related to the people involved shall be kept in mind. This includes 

the engineering judgement combined with human error and subjectivity and refers to the experience 
of the engineer who puts information into a database and later uses the database for evaluation. Here, 
especially the selection or filtration, the interpretation and analysis of the test results depend on 
experience and also on the applied accuracy. 
 

2.5 TWO-STEP PROCEDURE TO REMOVE STATISTICAL DEPENDENCIES 
 
Although one may suspect various input parameters to be the explanatory variables behind statistical 
dependencies between the model factor and the calculated quantity, it is not easy to remove these 
dependencies in a more physical way by regressing the model factor against each input parameter. 
This could be primarily attributed to the following two reasons: 

(1) Load tests in a database are usually limited, as stated in section 2.4 titled by “Use of 
databases”; 

(2) The values of input parameters cannot be varied systematically in the database for regression 
analysis. 

Phoon et al. (2003) proposed a generalized model factor that involves regressing the measured 
capacity against the calculated capacity. This first-order approach is practical. However, the 
underlying influence of each input parameter is not explicitly considered, hence it is judicious to 
apply the generalized model factor only to foundations that are represented in the load test database. 

To solve the deficiency in the generalized model factor approach, Zhang et al. (2015) presented a 
two-step procedure of using a mechanically consistent numerical method such as the finite element 
method (FEM) to remove the statistical dependencies and then revise the model factor to account for 
field effects using limited full-scale test data. This framework was recently applied to characterize the 
model uncertainty in the capacity prediction (Phoon and Tang 2015, 2017; Tang and Phoon 2016, 
2017a; Tang et al. 2017a). The difference between these cited work and Zhang et al. (2015) is that 
FEM was replaced by finite element limit analysis (FELA). The procedure can be summarized as 
follows: 

(1) Define a correction factor Mc (see Eq. 2-4) as the ratio of the calculated quantity Xp from a 
more advanced numerical method and the calculated value using a simplified model. 
Perform regression analysis to remove the statistical dependencies between Mc and input 
parameters (see Eq. 2-5). 
 

       p c calX  = M   X  (2-4) 

       cM  = f  η  (2-5) 

 
where f is regression equation which is a function of input parameters and η is regression 
residual. 

(2) Use a calibration database to characterize the model factor Mp (see Eq. 2-6) of the numerical 
method where fewer idealizations are made and thus model uncertainty always exists. Thus, 
Mp is usually random (Zhang et al. 2015; Phoon and Tang 2015, 2017; Tang and Phoon 2016, 
2017a; and Tang et al. 2017a). 
 

       meas p pX  = M   X  (2-6) 
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(3) Revise the model statistics according to Eq. 2-1 and Eq. 2-4 through Eq. 2-6, namely 

 

          meas p cal calX  = M   η   f  X  = M   X      (2-7) 

 
where M' = Mp×η is the modified model factor and X'cal = f×Xcal is the modified calculated 
value. The practical significance of Eq. 2-7 is that the existing calculated models can be 
improved by multiplying with the regression equation f to remove the dependency on input 
parameters. 

(4) Verify the statistics of M' using a validation database. 
 
Accordingly, it can be observed that the above procedure provides a practical strategy to derive 

model statistics, particularly for limited full-scale load tests, which is commonly encountered in 
geotechnical engineering. Numerical studies have been conducted to demonstrate the effectiveness of 
this approach (see Appendix 2E): 

(1) Serviceability limit state: calculation of the top deflection of a cantilever wall in undrained 
clay using MSD (see Zhang et al. 2015); 

(2) Ultimate limit state: calculation of the bearing capacity of strip footings on sand under 
general combined loading using Eurocode 7 (see Phoon and Tang 2015, 2017); 

(3) Ultimate limit state: calculation of the uplift capacity of helical anchors in undrained clay 
using the cylindrical shear method (see Tang and Phoon 2016); 

(4) Ultimate limit state: calculation of the bearing capacity of circular footings on dense sand 
(see Tang and Phoon 2017a); 

(5) Ultimate limit state: calculation of the bearing capacity of large circular and conical 
foundations on sand overlying clay (see Tang et al. 2017a). 
 

2.6 IMPLEMENTATION IN DESIGN 
 

Phoon and Kulhawy (2005) stated that RBD is a helpful tool in geotechnical design as it ensures 
self-consistency from physical and probabilistic requirements. They argued that it is a philosophical 
question if there is the willingness to accept RBD as a necessary basis for calibrating LRFD factors. 

In this regard, one should keep in mind that the assessment of model uncertainties related to a 
particular design method is not only important for the design of the single structure. Moreover, 
depending on the relevance of this single component for the whole construction it is important for 
assessing the overall uncertainties of the global design in the decision process. 

Once the general concept of RBD has been accepted, the quantification of model uncertainties 
can be implemented in geotechnical design on different levels of complexity: 

(1) Direct use in RBD as a random variable (e.g. FORM, MCS) 
(2) Use as a constant value in LRFD (e.g. model factor) 
For geotechnical engineers the acceptance of such concepts for the daily design practice is 

strongly related to their practical applicability. This probably supports the use of model factors in 
LRFD design despite the disadvantages outlined above. In this regard, constant value means that a 
model factor is at least constant for a certain range of possible design situations. 

During the revision process of Eurocode 7 the application of model factors within the limit state 
equation is currently being discussed. According to this, model factors shall be used to correct 
calculation models against a reference value, so that the model is either accurate or conservative. They 
shall be applied to actions, effects of actions, material properties or resistances. 

Following the discussion in this report it needs to be emphasized here, that this reference value 
should be derived from appropriate test results preferably from databases fulfilling the requirements in 
section 2.4. The reference value shall not (only) be derived from another design method, just because 
it is assumed to be more sophisticated, thus representing reality, as this method itself may have (other) 
uncertainties. 

As outlined before, a model factor usually cannot be unique in order to cover as many design 
situations as possible. This will also affect the derivation of the partial factors. Hence, geotechnical 
engineers must accept a set of factors for different design situations. Nevertheless, one should keep in 
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mind that the global aim of a constant reliability level for all designs still seems to be difficult if not 
impossible to reach. This especially applies to complex designs where model uncertainties cannot be 
reduced to single model factors. 

 

2.7 CONCLUSIONS 
 

The discussion illustrated the importance of evaluating and quantifying model uncertainties in 
geotechnical design due to the high sensitivity of many design models for this source of uncertainty. 
Databases of very well documented, high quality field and laboratory tests under diverse site 
conditions and under controlled laboratory conditions are a good tool for assessing model 
uncertainties. The main concern related to databases is the availability of a sufficiently large number 
of tests among the whole design range to be considered. This is especially important as model 
uncertainties are difficult to separate from other inherent uncertainties such as the soil variability or 
uncertainties related to the test performance. 

The implementation of model factors in LRFD can provide a practical tool for considering model 
uncertainties in daily design practice. However, one should keep in mind that model factors are 
strongly related not only to the design method but also to the design situation. The use of single model 
factors is therefore (often) not correct. 

The uncertainties of complex designs are difficult to be reduced to model factors in LRFD 
designs. In such cases model uncertainty assessment shall be performed by higher levels of RBD 
using e.g. various case studies for comparison. 
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Appendix 2A: Model uncertainty of bearing capacity analysis for shallow foundations 

(K. Lesny) 
 

The following summary is based on the references given below. 
The model uncertainty of ULS bearing capacity analysis has been evaluated on the base of a 

comprehensive database of load tests on shallow foundations. The database contained 549 cases of 
load tests compiled from various publications and from own model test data, for details see references 
below. Table 2A-1 summarized the test data. 

Most cases in the database are related to foundations subjected to vertical-centric loading in or on 
granular soils. Tests of foundations subjected to combined loadings (vertical-eccentric, 
inclined-centric and inclined-eccentric) were mainly small scale model tests performed in controlled 
soil conditions (in laboratories using soils of known particle size and controlled compaction). 

 

Table 2A-1 Summary of model tests in the database. 

Foundation type 
Predominant soil type 

Total 
Sand Gravel Mix Others 

Plate load tests B ≤ 1m 346 46 2 72 466 

Small footings 1 < B ≤ 3m 26 2 4 1 33 

Large footings 3 < B ≤ 6m 30 -- 1 -- 31 

Rafts & Mats B > 6m 13 -- 5 1 19 

Total 415 48 12 74 549 

Notes: 

 “Mix”: alternating layers of sand or gravel and clay or silt 

 “Others”: either unknown soil types or other granular materials like 

loamy Scoria 
 

To define the ULS failure load of each test several failure criteria were examined: 
(1) Minimum slope failure criterion by Vesić (1975) 
(2) Log-log load-settlement curve method by de Beer (1967) 
(3) Two-slope criterion described in NAVFAC (1986) 
For most test results the corresponding load-settlement curves did not show a clear peak, hence 

interpretation of the failure loads was difficult. In addition, many load tests were not carried out to 
failure, making them unsuitable for the analysis. This was especially the case for larger foundations 
for which failure would be associated with very large loads and excessive displacements. It was 
finally found that the minimum slope failure criterion provided the most consistent interpretation 
when establishing the measured bearing capacity from the load tests.  

For establishing the calculated bearing capacity the basic bearing capacity equation by Vesić 
(1975) was used. Numerous analytical expressions for the different factors (bearing capacity, shape, 
and depth and inclination factors) were analyzed to find the most consistent expressions. 

Uncertainties of this design method were expressed as a bias, i.e. the ratio of measured over 
calculated bearing capacity, including all sources of uncertainties such as scale effects, variation of 
soil properties and their interpretation, capacity interpretation etc. Biases were studied according to 
loading types (vertical-centric, vertical-eccentric, inclined-centric and inclined-eccentric) and soil 
conditions (natural (field) and controlled (laboratory) soil conditions). Figure 2A-1 shows the biases 
for vertical-centric loading. 

Figure 2A-1 reveals that there might be a relation between the footing size and the bias. 
Laboratory small scale model tests (very small footings tested in controlled soil conditions, general 
failure) show a larger bias than larger footings especially in natural conditions where general shear 
failure is not always reached. However, this is superposed by the test conditions (natural versus 
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Vertical Centric Loading 
n = 172; mean bias = 1.68, COV = 0.299 

Natural soil conditions 
(f from SPT-N counts) 
n = 14; no. of sites = 8 

mean = 1.00 
COV = 0.329 

Controlled soil 
conditions (Dr  35%) 

n = 158; no. of sites = 7 
mean = 1.73 
COV = 0.271 

B > 1.0m 
n = 6 

no. of sites = 3 
mean = 1.01 
COV = 0.228 

0.1 < B  1.0m 
n = 8 

no. of sites = 7 
mean = 0.99 
COV = 0.407 

B  0.1m 
n = 138 

no. of sites = 5 
mean = 1.67 
COV = 0.245 

0.1 < B  1.0m 
n = 20 

no. of sites = 3 
mean = 2.19 
COV = 0.275 

controlled soil conditions, i.e. soil variability, measurement errors etc.), so the differences in the bias 
cannot only be attributed to scale effects. 

 
Figure 2A-1 Summary of biases for footings under vertical-centric loading differentiated according to 

soil conditions and model scale (Paikowsky et al. 2010). 
 
For vertical-eccentric loading cases, the bias had a mean of 1.81 and a COV of 0.349. For 

inclined-centric loading cases, the bias had a mean of 1.43 and a COV of 0.295. Inclined-eccentric 
loading cases were distinguished into positive or reversible and negative moment, which also affect 
the bias (positive moment: mean = 1.41, COV = 0.278, negative moment: mean = 2.03, COV = 
0.094). 

The results show the conservatism in the design method, the influence of the site (soil 
conditions), some influence of the model scale and a very strong influence of the loading situation. 

Based on the statistical parameters for the bias in different design situations, different resistance 
factors for different loading conditions were calibrated for a target reliability of T = 3.0 and 
lognormal distributions for loads and resistance from calculations using the first order second moment 
method (FOSM) and MCS. 
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Appendix 2B: Model uncertainty of bearing capacity and settlement analysis for 

shallow foundations on cohesionless soils (S. O. Akbas) 
 

The following summary is based on several published studies: 
 

Bearing capacity of shallow foundations on cohesionless soils 
 

Summary from: Akbas, S.O. and Kulhawy, F.H. (2009). Axial compression of footings in cohesionless 
soils. II: Bearing capacity. Journal of Geotechnical and Geoenvironmental Engineering, 135(11), pp. 
1575-1582. 
 
An extensive database of full-scale field load tests was used to examine the bearing capacity of 
footings in cohesionless soils. This database summarizes published case histories from 37 sites with 
167 axial compression field load tests on footings conducted in cohesionless soils ranging from silt to 
gravel. The case histories were categorized into three groups based on the quality of the load test data. 
The range and mean of the geometrical properties and effective stress friction angles, and the 
available in situ test results, are summarized in Table 2B-1. 
 
Table 2B-1 Summary of some geometrical and geotechnical properties and availability of in situ test 

results. 

 

 
Each load test curve was evaluated consistently to determine the interpreted failure load, i.e., 

bearing capacity, using the L1-L2 method. This test value then was compared with the theoretical 
bearing capacity, computed primarily using the basic Vesić model. The predicted bearing capacity 
values (Qtcp) are plotted versus the measured QL2 in Figure 2B-1 for all of the data. 

This figure shows that the predicted bearing capacity generally is underestimated for QL2 less 
than about 1,000 kN, and the difference between Qtcp and QL2 generally increases with decreasing QL2. 
This trend suggests a possible relationship between the footing width B and Qtcp /QL2, or bias, i.e. the 
ratio of calculated over measured bearing capacity, since the bearing capacity is expected to increase 
with B, for soils of comparable strength. 

ÿll of the further analyses of the data showed an increase in the ratio of predicted-to-measured 
bearing capacity with increasing B, up to about B = 1 m. The comparisons show that, for footing 
widths B > 1 m, the field results agree quite well with Vesić’ predictions. 

 

Settlements of shallow foundations on cohesionless soils - elasticity-based methods 
 

Summary from: Akbas, S.O. and Kulhawy, F.H. (2013). Model uncertainties in elasticity-based 
Settlement Estimation Methods for Footings on Cohesionless Soils. International Symposium on 
Advances in Foundation Engineering (ISAFE 2013). 

 
The empirical nature of these various elasticity-based methods suggests a significant uncertainty in 
the estimated settlements. To assess this uncertainty, an extensive database of 426 case histories was 
used to assess the model factor (i.e. the ratio of calculated to measured settlement) for the methods 
developed by D’Appolonia et al. (1970), Parry (1971), Schultze and Sherif (1973), Schmertmann et al. 
(1978), and Berardi and Lancellotta (1991). Considering the model uncertainty as a random variable, 
the uncertainty in the model factors is also characterized using the coefficient of variation (COV). 

The database includes foundations of various sizes, from small test plates 0.25 m wide to mat 
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foundations up to 135 m wide. The structures corresponding to these foundations include bridges, test 
footings, buildings, tanks, embankments, chimneys, nuclear reactors, and silos. The details of all 
available geometric and geotechnical data are provided in Akbas (2007). For those cases where a 
complete load-settlement curve is available instead of a single response point, the load and settlement 
values at the elastic limit (L1), QL1 and ρL1, were used to estimate the accuracy of the settlement 
estimation methods. The elastic limit is described elsewhere (e.g., Akbas 2007, Akbas and Kulhawy 
2009). 

 

 
Figure 2B-1 Predicted (Qtcp) versus measured (QL2) bearing capacity for footings in drained 

axial compression (all data and Group 1 data averaged per site). 
 
Results for the five selected methods are summarized in Table 2B-2 and include the mean, 

maximum, minimum, COV, and percent exceedance. It is clear that there is much uncertainty for all of 
the methods. The mean ρc/ρm varies from 1.05 to 2.00, which is a much smaller range than that 
obtained for Terzaghi and Peck (1948) based methods (Akbas and Kulhawy 2010). Schultze and 
Sherif (1973) is the most accurate (lowest mean) and the least conservative (underestimates most, in 
61% of the cases), while Schmertmann et al. (1978) is the least accurate (highest mean) or most 
conservative (overestimates most, in 71% of the cases). In general, the results suggest there is a 
trade-off between accuracy and conservatism of the settlement estimation methods, i.e., as the mean 
ρc/ρm approaches one, the number of underestimated cases increases. The COVs, which are 
indications for statistical precision, range between 70 and 94%, and these high values are consistent 
with previous research (e.g. Akbas and Kulhawy 2010). These values correspond to a narrow range of 
standard deviation values between 0.99 and 1.09 for D’Appolonia et al. (1970), Schultze and Sherif 
(1973), and Parry (1971), while Schmertmann et al. (1978) has the highest standard deviation of 1.40. 

The following definition is used often to address model uncertainties (e.g. Phoon and Kulhawy 
2003): 

 

c mM     (2B-1) 

 
in which M is model factor, which usually is assumed to be a lognormally distributed random 
variable. 

The ratios of calculated to measured settlements, or the model factors, were shown in Table 2B-2 
for the statistical analysis of the 426 case histories. Using the same database, it was shown by Akbas 
and Kulhawy (2010) that very slight reduction of model factor COVs are obtained when data from 
183 load tests only are used, excluding the remaining 243 observations on instrumented structures. A 
similar observation was also made by Phoon and Kulhawy (2005) for the model factors that 
correspond to the lateral capacity of free-head drilled shafts. Therefore, it was assumed that the 
extraneous uncertainties involved in the estimated model factors would be equal to the corresponding 
lower end values for measurement errors and inherent variabilities that were specified in Phoon et al. 
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(1995). To incorporate model uncertainties in reliability-based design (RBD), the assumption of 
lognormality of ρc/ρm or M must be established. For the five settlement methods, lnM is plotted on 
normal probability plots. From inspection, it was seen that lognormality is a reasonable assumption 
for the distribution of M. Also, the obtained P values indicate that the null hypothesis of normality for 
lnM cannot be rejected at a 5% level of significance, except for the D’Appolonia et al. (1970) method. 

 

Table 2B-2 Relationship between calculated and measured settlements. 

 
 
Further analyses indicate that, the overall accuracy of all methods is low, with no method being 

capable of estimating settlements within 5 mm of the measured settlements with a probability higher 
than about 10%. 

 

Settlements of shallow foundations on cohesionless soils - Terzaghi and Peck-based 

methods 
 

Summary from: Akbas, S.O. and Kulhawy, F.H. (2010). Model Uncertainties in “Terzaghi and Peck” 
Methods for Estimating Settlement of Footings on Sand. GeoFlorida: Advances in Analysis, Modeling 
and Design (GSP 199). 

 
The Terzaghi and Peck (1948) method was the first for predicting the settlement of footings on sand 
using standard penetration test blow counts (N values). Over the following years, various 
modifications to this basic method were suggested. An extensive database of 426 settlement case 
histories is used to assess the model factors for this family of methods.  

As in many previous studies, the methods of estimating settlements are evaluated first by 
comparing the calculated (ρc) and measured (ρm) settlements. Statistically, an accurate method would 
be one that yields a mean close to or equal to 1.0 for a set of values of the ratio of measured to 
calculated settlements or vice-versa. The relationships between the calculated and measured 
settlements for the six selected methods are summarized in Table 2B-3 and include the mean, 
maximum, minimum, coefficient of variation (COV), and percent exceedance. It is clear that there is 
much uncertainty for all of the methods. The mean calculated to measured settlement (ρc/ρm) varies 
from 1.36 to 3.67. Gibbs and Holtz (1957) is the most accurate (lowest mean), while Terzaghi and 
Peck (1948) is the least accurate (highest mean) or most conservative (overestimates most, in 93% of 
the cases). The least conservative methods are those of Gibbs and Holtz (1957) and Alpan (1964), 
which both overestimated 58% of the cases. In general, the results indicate that there is a trade-off 
between the accuracy and the conservatism of the settlement estimation methods, i.e., as the mean 
(ρc/ρm) approaches one, the number of underestimated cases increases. The same observation was 
made by Tan and Duncan (1991). 

As shown, the COVs range from 69 to 103%. These high values are consistent with previous 
research (e.g., Jeyapalan and Boehm 1986). Note that the Gibbs and Holtz (1957) and Terzaghi and 
Peck (1948) methods have the lowest COV (most precise), with a value of 69%. The Peck et al. (1974) 
and Alpan (1964) methods have the highest COVs (least precise), at 103 and 102%, respectively. 

Because of the inherent variability of soil properties, construction variabilities, and measurement 
errors, it is found reasonable to assume that the model factor statistics are lumped statistics that 
include the model uncertainties and some extraneous uncertainties, especially for the instrumented 
structures and, to a lesser extent, for the load tests. To test this argument, a simple comparison was 
made between the model factors from the load tests only, which includes 183 tests, and from the 
whole database. The results are shown in Table 2B-4. Except for the Alpan (1964) method, the 
uncertainties decreased slightly when only data from the load tests were considered. 
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Table 2B-3 Relationships between calculated and measured settlements. 

 
 

Table 2B-4 Comparison of model factors for load tests and whole database. 

 

The decrease in COV ranges from 3 to 7%. Therefore, when using a database that includes load 
tests (field and lab) and field measurements on actual structures, extraneous uncertainties should be 
considered in estimating model uncertainties for RBD calculations. However, considering the Phoon 
and Kulhawy (2005) results, the effect of normalization, and the likelihood that the equipment and 
procedural control in documented and monitored cases would be higher than those in average 
construction, it can be assumed that the effect of extraneous uncertainties on the estimated model 
factors should be minimal, especially when only the highest quality data are used. This assumption 
also is supported by the relatively small differences in the COV values in Table 2. Therefore, it was 
deducted that the extraneous uncertainties involved in the estimated model factors would be equal to 
the corresponding lower end values for measurement errors and inherent variabilities that were 
specified in Phoon et al. (1995). It was also determined that for each method, model factors can be 
effectively modeled as lognormal random variables. 

Based on the properties of the lognormal distribution, an attempt was made to estimate model 
factors that are free from extraneous uncertainties. Then, for a design settlement of 25 mm, the model 
factors were used to calculate the probability of failure, the reliability index (β), and the probability 
that the measured settlement will be between 0 and 10 mm, 10 and 25 mm, and 20 and 25 mm for the 
six methods considered, using the best-case and worst-case scenarios, respectively. The results 
indicate that the probability that the settlements would be within 5 mm of the targeted settlement 
ranges between only about 4 and 12%, even for the best-case scenario. A comparison of the estimated 
probabilities and reliability indices for the best-case and worst-case scenarios shows that the 
uncertainties from the N value and loading have only minor effect on the results compared to the 
model uncertainties. 
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Appendix 2C: Existing work on model uncertainty evaluation for shallow foundation 

settlement prediction on sandy soils and a new proposal (G. Vessia) 
 

The estimation of the model uncertainty in the calculation of shallow foundation settlements on sandy 
soils was first addressed by Terzaghi and Peck (1967) that posed that density and compressibility of 
sandy deposits is often that erratic to be unrealistic to imagine that any method would be capable of 
estimating actual settlements of footings. Terzaghi and Peck (1967) suggested that, if several identical 
footings, all equally loaded, were built on the same sand deposit, the ratio between the upper bound 
and the lower bound of the estimated settlements will be likely to get to 2 or higher values.  

Starting from the preceding considerations, the model uncertainty is considered as one value 
including other sources of uncertainties like (Uzielli and Mayne 2012): 

(1) inherent complexity and uniqueness of geomaterials, foundations and their functional 
interaction; 

(2) the epistemic uncertainty related to imperfect measurement of the soil-foundation system; 
(3) the transformation uncertainty in the load-displacement model itself. 
A few authors devoted explicit efforts to calculate the model uncertainty in settlement 

predictions on sandy soils. 
Tan and Duncan (1988) introduced the ratio R obtained as calculated settlements scalc divided by 

measured settlements Smis: 
 

S Scalc misR=    (2C-1) 

 
Thus, databases of R values can be collected. Nevertheless, some statistics are needed to rank the 

magnitude of model uncertainty of several settlement prediction equations for sandy soils Scalc. Then 
et al. Duncan (1988) introduced two quantities, namely accuracy and reliability. They defined the 
accuracy as the average value of this ratio for all the cases in the database. A value of this average 
equal to unity represents the best possible accuracy. The reliability is defined as the percentage of the 
cases for which R is equal or greater than 1. Perfect reliability is equal to 100. Finally, they used 
adjustment factors to rank the model uncertainty as a list of ranks from the most to the less efficient 
settlement prediction equations. In the same period, Briaud and Tucker (1988) introduced a concise 
index that took into account accuracy and precision, namely “Ranking Index” RI: 

 
     RlnsRlnRI   (2C-2) 

 
where  and s are the mean and the standard deviation of R. The precision represents the dispersion of 
R values about its mean and the accuracy measures the greater or smaller closeness of a set of 
measures to the real value. This latter is an indicator of the central trend, as the mean. Later on, 
Cherubini and Orr (2000) suggested using the “Ranking Distance” RD instead of the RI: 

The calibrated bias and COV of a transformation model can be adopted to develop the point 
estimate and 95% CI, described as follows. Consider again the LI-(su

re/Pa) model, let the site-specific 
LI value for the new design site be denoted by LInew, the point estimate for (su

re/Pa)new is simply 
b(predicted target value) = b(0.0144LInew

-2.44). By assuming  to be lognormal, the 95% CI for 
(su

re/Pa)new can be expressed as 
 

     22 RsR1RD   (2C-3) 

 
Plotting RD on a Cartesian plane it provides with a geometrical interpretation of the best 

combination between accuracy and precision among many possible R values (as shown in Figure 
2C-1). 

Afterwards, Cherubini and Vessia (2009) studied the model uncertainty R of 9 settlement 
prediction equations for sandy soils that used NSPT measures. The Smis measured settlements used for 
calculating R values (Eq. 2C-1) come from Burland and Burbidge (1985) database of 192 values from 
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full-scale shallow foundations of several dimensions set in several sandy soils. Thus, for each 
equation 192 R values have been calculated and 9 R samples have been collected whose statistics 
have been calculated. 

 

 

Figure 2C-1 Plane showing both mean values (on the x axis) and standard deviations (on the y axis) of 
R for the nine settlement formulas (modified from Cherubini and Vessia, 2009). 

 
As the settlement prediction equations are concerned, the chosen nine equations are introduced 

below (all the references can be found in Cherubini and Vessia 2009), according to the following 
notations: 

- B (m) least width of a rectangular foundation or diameter of a circular foundation; 
- D (m) depth of footing embedment below ground surface; 
- E (kPa) modulus of soil stiffness; 
- H (m) depth of the incompressible soil; 
- Hs (m) thickness of the compressible layer below the foundation; 
- I influence factor for computing settlement from elasticity theory; 
- q (kPa) net increase of the effective pressure at foundation level; 
- Sc (mm) calculated settlement; 
- NSPT number of blow counts in an SPT; 
- ’v0 (kPa) overburden effective pressure at depth z. 
 

 Terzaghi and Peck (1948) 
 

wd
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0SPT
c CC

BB

B

N

q
18.3S 




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




   (2C-4) 

 
where the depth coefficient Cd is assumed to be 1 and for D = 0, 0.75 for D  B (Jorden, 1977), for 0 < 
D < B it is linearly interpolated as Cd = 1-0.25D/B (Pasqualini, 1983). The water table coefficient, Cw, is 
assumed equal to 1 for Dw  2B, to 2 for Dw  0, for 0 < Dw< 2B it is linearly interpolated as 
Cd=2-0.5Dw/B. 
 

 Meyerhof (1965) 
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where Cd has the same meaning as in Terzaghi and Peck’s method (1948). 
 

 Meigh and Hobbs (1975) 

 

2

c d
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q B 4
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 (2C-6) 

 
where for Cd the authors refer to Terzaghi and Peck’s method and the ratio qc/NSPT depends on the 
grain-size distribution of soil. 
 

 Arnold (1980) 
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 (2C-7) 

 
where Hs = min(2B, H-D) which is the depth of the compressible layer below the foundation (in m), 
α = 0.032766-0.0002134DR, Q = 19.63DR-263.3, m = 0.788+0.0025DR, and DR = relative density is 
given by DR(%) = 25.6+20.37×[1.26×(NSPT-2.4)/(0.0208σ'v0, D+B/2+1.36)-1]0.5 for NSPT  6 and 45%  DR 

 100%. 
 

 Burland and Burbidge (1985) 
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where qgross is the gross bearing pressure at foundation level (kPa), Z is the depth of influence for NSPT 
averaging that is (NSPT)AV. If NSPT values decrease with depth, Z is equal to 2B. Otherwise, it is 
calculated by the following interpolating equation: Z=0.933B0.779. 

 
 Anagnostopoulos et al. (1991) 
These authors suggest two settlement formulas: 
Formula1: 
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Formula 2: 
 














m3Bfor
N

Bq
64.1

m3Bfor
N

Bq
9.1

S

37.1

59.002.1

08.1

45.077.0

c         (2C-10) 



Joint	TC205/TC304	Working	Group	on	“Discussion	of	statistical/reliability	methods	for	Eurocodes”	 	
–	Final	Report	(Sep	2017) 

46 
 

 Schultze and Sherif (1973) 
 
Starting from the general formula for predicted settlement by means of the elasticity equation: 

 

cS = qBI E   (2C-11) 

 
This expression is obtained by numerical integration of Boussinesq solution for circular footing 
whereas for rectangular footing the influence factor I by Steinbrenner’s method (1934) is introduced. 
The stiffness modulus E (in kPa) is given by E = 1678(NSPT)0.87∙B0.5∙(1+0.4D/B). 

 
 Berardi and Lancellotta (1991) 
 
As the preceding authors do, Berardi and Lancellotta start from the elasticity equation for settlement: 

 

cS = qBI E  (2C-12) 

 
but calculate each term differently from the previous authors. As a matter of fact, the influence factor I 
has been calculated by numerical integration of Boussinesq solution considering rigid footing. The 
stiffness modulus, E, is given by E = KE×pa×[(σ'v0, D+B/2+Δ σ'v0, D+B/2)/pa], where pa is the reference 
pressure and KE is initially evaluated as KE = 100+900DR, DR = min[1, (N1/60)0.5], and N1 = 2NSPT 
/(1+σ'v0, D+B/2/98.1). 

Once the settlement has been calculated, KE is corrected as KE, corr = KE∙0.1912∙(Sc/B)-0.6248 and the 
predicted settlement is recalculated using KE, corr instead of KE. Cherubini and Vessia (2009) suggested a 
procedure to rank the nine R samples of model uncertainty by the use of four indexes: (1) precision, (2) 
accuracy, (3) entropy, and (4) relative entropy. The first two indexes can be combined into the Ranking 
distance and plotted as shown in Figure 2C-1. 

Entropy (Shannon, 1948) and relative entropy (Kinsley, 1983), like the variance, are measures of 
the dispersion according to the following expressions, respectively: 

 

   n

i ii 1
H x P ln P


    (2C-13) 

   r maxH x =H x H  (2C-14) 

 
where Pi is the probability value associated with the calculated R value. 

The procedure consists of (1) calculating the RD, whose ideal value is 0, (2) calculating the relative 
entropy by Eq. 2C-14 whose ideal value is about 0, and (3) ranking the equations according the 
calculated values of RD and Hr. 

The final aim of the proposed procedure that can be extended to a larger number of equations is to 
provide a quick tool for designing. In fact, curves of different levels of probability for settlement target 
values can be drawn through several formulas. Hereafter just to provide with an example, three curves 
have been calculated for three formulas that are: two by Anagnostopoulos et al. (1991), named APK1 
and APK2 and one by Schultze and Sherif (1973), named SS. The preceding equations are the most 
precise formulas among the nine considered by Cherubini and Vessia (2009) according to the available 
full-scale data by Burland and Burbidge’s settlement database. 

As far as the values of the shallow foundation settlements are concerned, Eurocode 7 (BS 2004, 
updated 2013) suggests an upper limit equal to 50mm to be accepted. Nevertheless, the preceding value 
refers to common buildings with no complex structures. In practice, settlements can be accepted if they 
do not cause both static and functional problems to structures and services. Thus, five values of 
settlements are hereafter considered as acceptable: 5, 15, 25, 35 and 45 mm. The exceeding probability 
curves are related to three samples of R that are normally distributed. The curves are drawn according to 
the following expression: 

   calc mis calc misp(R R) p R S S p S R S    
                                             

(2C-15) 
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This expression shows that the probability that a settlement value is higher than the corresponding 
measured one is equal to the probability that any value of R is lower than a fixed value of R (5, 15, 25, 
35 and 45). Figures 2C-2 to 2C-4 show the probability curves calculated through APK1, APK2 and SS. 

The values corresponding to the probability of exceedance can be obtained from these settlement 
probability curves. For example, considering that a 30mm settlement has been estimated by means of 
the SS formula, Figure 2C-4 shows that there is a 30% probability that the actual settlement under 
footing will be more than 45mm, that is to say the probability of calculating settlements below 45mm 
will be 70%. Similarly, there will be a 15% probability that the settlement is below 15mm, i.e. an 85% 
probability that the settlement is more than 15mm. For all three formulas the exceeding probability 
curves for values of settlements occurring between the curves plotted on the graph will be obtained by 
interpolating the values of probability for the two curves which mark the range. 

These probability charts let the engineer know the probability that a certain value of the settlement 
measured is exceeded provided that the settlement value is known, i.e. they provide the conditioned 
probability of the settlements measured: 

 

 mis calcP S >S S =s  (2C-16) 

 
where Scalc and Smis are the calculated and measured settlements, respectively; s and S are the values 
of their respective settlements. So, the conditioned probability in terms of not-exceedance will be the 
following: 

 

   mis calc mis calcP S >S S =s =1-P S <S S =s   (2C-17) 

 
Therefore, as a result of a reliability-based design in terms of settlements (calculated by means of 

one of the three formulas APK1, APK2 and SS), the probability that the actual settlement of the footing 
does not exceed a given value can be easily got by the conditioned probability theorem: 

 

     mis calc mis calc calcP S <S S s =P S <S S =s P S s    (2C-18) 

 
where the first term comes from the probability charts (Figures 2C-2 to 2C-4) while the second one 
derives from the reliability-based design. 
 

 

Figure 2C-2 Normal-distribution probability curves corresponding to different values of acceptable 
settlements calculated by APK1 formula. 
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Figure 2C-3 Normal-distribution probability curves corresponding to different values of acceptable 
settlements calculated by APK2 formula. 

 

 
Figure 2C-4 Normal-distribution probability curves corresponding to different values of acceptable 

settlements calculated by SS formula. 
 

In fact, if the settlements are estimated by the SS formula, and the probability of not exceedance 
of a 20 mm settlement is equal to 10-4, the probability that the settlement actually measured is below 
25 mm will be easily got from Figure 2C-4: 

 
    44

SScalcmis 1054.01046.01mm20Smm25SP    (2C-19) 

 
If the two other formulas are used to estimate settlements the following results will be calculated: 
 

    44

1APKcalcmis 1058.01042.01mm20Smm25SP     (2C-20) 

 
    44

2APKcalcmis 1050.01050.01mm20Smm25SP    (2C-21) 
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Appendix 2D: Model uncertainty evaluation for pile foundations (W. Bogusz) 
 

While using the LRFD method in accordance with Eurocode 7, the choice of the calculation model 
used to correlate predicted bearing capacity with soil test results is the responsibility of the 
geotechnical designer, who has to guarantee its validity. Vast majority of currently used calculation 
models, some of which developed decades ago, were based on empirical data gathered by performing 
static load tests on full-scale piles. To ensure the safety of the design, these models were provided 
with associated safety factors, most commonly, single global factors of safety covering all the 
uncertainties concerning actions and resistances. For example, Bustamante and Gianeselli (1981) 
proposed using a factor of 3 for the base and a factor of 2 for the shaft resistances of axially loaded 
piles, respectively, in association with their method. Moreover, those models are also often associated 
with additional rules (i.e. on embedment depth in bearing stratum) and limitations (i.e. maximum unit 
shaft friction or base resistance), which differentiate the reliability of different methods. 

 

Model factor for piles 
 

As different degrees of conservatism and calculation rules are associated with different calculation 
models, Bauduin (2003) states that it may be difficult to reach the required safety level linking these 
models with a set of partial factors provided in standards. These partial factors should be independent 
of the calculation model in use, and they should cover other sources of uncertainties. The main reason 
for the use of a model factor is to provide an expected level of reliability of the prediction of the 
calculated resistance value for a specific model, to either provide accurate results or err on the side of 
safety. According to Bauduin (2003), a model factor modifying the calculation results should be used 
to address the bias of Rmeasured/Rcalc presented by the model and its variability. The main point of using 
this factor is to ensure, with given probability, that the resistance of the pile will be larger than the 
predicted value. 

Two commonly applied calculation model types are used in practice for pile foundations when 
prediction is based on soil test results. Firstly, semi-empirical methods (i.e. model pile procedure in 
Eurocode 7), where pile shaft and base resistance are derived from the measured ground parameter 
directly for a specific location, where tests were conducted. The tests most commonly used to directly 
derive pile capacities are CPT, SPT and PMT. Secondly, analytical models (indirect methods; i.e. 
alternative procedure in Eurocode 7 if unit resistance for a stratum in not directly correlated to 
measured values of a specific profile) may be used, which are often based on soil strength parameters 
derived from aforementioned in-situ tests or laboratory tests, introducing additional uncertainty due to 
parameter identification error and subjectivity of the parameter selection. According to Bauduin 
(2003), those uncertainties are included into the model uncertainty. 

According to Bauduin (2002, 2003), the model factor introduced in the design aims to provide 
a certain reliability of prediction using a specific calculation model; thus, ensuring that there is only a 
p% probability that the real value is lower than calculated one. In order to do that, the model factor 
has to integrate both, the bias and the coefficient of variation. 
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It is possible to distinguish three main approaches of database analysis in order to derive the 

model factor for a calculation method (Bauduin, 2002). The first one considers a very high level of 
detail in the analysis, where each type of pile can be calibrated for specific soil conditions. The second 
one allows a lower level of detail grouping similar piles and soil conditions together. The third and 
last approach allows for larger generalization, treating all data as one sample, resulting in one 
calibration factor for the calculation method. 

The choice of the approach should depend on the availability of data and the possibility of 
modification of other factors affecting the reliability of the design, namely installation factors and 
partial safety factors. In the best-case scenario, when a large and very detailed database is available, 
it may be more advisable to modify the installation factors instead of introducing an additional model 
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factor as a calibration method. On the other hand, if the database is considered as a single sample due 
to limited amount of data, modification of the partial safety factor for resistance may be required to 
differentiate e.g. between bored and driven piles. 

Bauduin (2002) argues that simplified global calibration of the resistance is justified; however, 
having separate data concerning shaft and base resistance, their separate calibration is also possible. 
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Effects of installation, as well as small variations in pile geometry, are taken into account by the 

calculation rule or are included in the scatter of Rmeasured/Rcalc (Bauduin, 2003). 
Existing databases with static load test results can be used to calibrate new calculation models. 

Additionally, to introduce a new type of pile, only five static load tests are necessary to establish its 
model factor (Bauduin, 2003). However, increasing their number lowers the uncertainty, allowing to 
lower its value. Appending new data of sufficient quality, gathered over time, would enable 
researchers and code drafters to regularly revise and possibly lower selected model factor values; this 
approach may give contractors an incentive to gather and share data as it might offer a possible cost 
reduction on future contracts. 

Bauduin (2002) stated that an assessment of a calculation model for pile foundation should 
consider: soil type; method of pile installation, geometrical data of the pile, and the method of ground 
testing. It may be assumed that these data should also be included as basic information in any 
database of pile load tests. 

Most of the older calculation models based on CPT results, used for bearing capacity prediction, 
utilized only cone resistance as an input value, while methods utilizing sleeve friction and pore 
pressure measurement (EN-ISO 22476-1) were developed relatively recently. However, it might be 
argued that the simplification of input data for the calculation model is a positive aspect, as it 
introduces some level of robustness to the design. 

One of the important factors affecting the predicted bearing capacity is the filtration and 
averaging of the soil test results in order to eliminate extreme values, often done by the engineer 
responsible for prediction of the pile capacity. It introduces additional bias that is not always directly 
related to the uncertainty of the method itself. Secondly, limiting the maximum unit bearing capacity 
to a specific value, used in some of calculation models, imposes an additional margin of safety. Such 
uncertainties and limitations are a result of limited knowledge about the behaviour of a specific model 
in certain conditions; potentially, it could be eliminated if additional data becomes available. 

 

Database of static load tests 
 

Although static load tests are considered as the most definite way of assessing pile capacity, they are 
not free of uncertainties. As the load measurement is done directly, the procedure used for the test 
(maintained load test, maintained rate of penetration, or creep test), measurement technique and the 
interpretation introduce some degree of uncertainty. 

Current assumptions about the ULS failure criterion provided in Eurocode 7 are that it 
corresponds to the settlement equal to 10% of the pile diameter. Although some calculation models 
assume even lower values (i.e. 5%), in fact, full mobilisation of end bearing capacity of a bored 
compression pile in sands can occur at settlement of approx. 20% of its diameter. Furthermore, due to 
the high non-linearity of pile behaviour, often not exhibiting clear plunging failure, different criteria 
are available for determining the ultimate bearing capacity. However, this is beyond the scope of this 
report. 

Compiling databases of static load tests is necessary in order to upgrade existing and develop 
new calculation models for the bearing capacity prediction of piles. Such databases are limited by the 
current technological advancement of both, ground and pile testing techniques. 

As the best approach for model factor derivation, as well as verification of existing and 
development of new calculation methods, is to use statistical methods; it is advisable to create 
databases of static load tests serving as reference values for calibration. However, the quality of input 
data is of significant importance. Firstly, the quality of the site investigation has to be considered. 
Optimally, in-situ testing should limit the influence of spatial variability, measurement errors, and 
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comprise of various techniques if possible. Additionally, the test should be performed to sufficient 
depth to take into account any possible weak strata that may be located below the pile base in its 
influence zone. Secondly, sufficient quality of test loads should be provided by performing only static 
load tests to failure, desirably, with distinction between shaft and end resistances. However, due to the 
costs and time consumption, in many cases these types of tests are avoided by contractors. Moreover, 
such tests performed to failure on working piles are quite seldom. Usually, if performed only as a 
proof test after pile foundation execution, the maximum load of a static test rarely exceeds 150% of 
the design load value to avoid unnecessary costs; these are associated mostly with the loading frame 
and anchoring required for higher loads. If the pile design is based on a conservative calculation 
model, it will not exhibit sufficient settlement which would correspond to the ultimate load criterion. 
Performing proof tests in limited loading range instead of up-to-failure tests gives very little 
knowledge about pile behaviour (Paikowsky and Tolosko 1999). Although there are methods of 
interpretation of non-failed static load tests, their use, especially as a basis for model calibration, is not 
recommended. Paikowsky and Tolosko (1999) analysed 63 load tests carried out to failure, 
disregarding the final part of the load-settlement data to simulate non-failed tests; then after applying 
two already existing and one proposed extrapolation methods, they compared the extrapolated pile 
behaviour with the real one. Over-prediction of bearing capacity based on extrapolation could be as 
high as 50%. 
 

 

Figure 2D-1 Pile design procedure with most significant uncertainty sources (courtesy of Witold 
Bogusz). 
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Advancement in data mining and data analysis techniques may provide more suitable tools, 
i.e. based on artificial neural networks, to eliminate model uncertainties or to take into the account 
additional factors. However, the use of these tools will still be limited by the amount and quality of 
available data. 

 

 
 

Figure 2D-2 Pile load test types used for verification of ultimate bearing capacity of pile foundations 
(courtesy of Witold Bogusz). 

 

Practical application of calculation model calibration 
 

An example of the development of a new calculation model, as an improvement of the Bustamante 
method (Bustamante and Gianeselli, 1981), with its calibration to derive model factors was presented 
by Burlon et al. (2014). It was based on the database of 174 full-scale, mostly instrumented, static pile 
load tests, which had been performed over a period of 40 years in France. The model factor was 
introduced in the French standard for pile design. Spatial variability was disregarded due to the 
location of the test piles at the exact locations of corresponding soil tests. 

Burlon et al. (2014) suggested two possible approaches for derivation of the model factor. First 
by comparison of the dispersion of the former and new calculation models, assuming a sufficient 
safety level of the former model, and the second approach as a direct determination using statistical 
analysis. It is worth noting that for a group of piles, mostly including micropiles and injected piles, a 
high value of the model factor is used due to insufficient samples in the database and to encourage 
full-static load testing of such piles. 

 

References 
 

Bauduin, C. (2002). Design of axially loaded piles according to Eurocode 7. Proceedings of the 
International Conference on Piling and Deep Foundations, DFI 2002, Nice, Presses de l’ENPC, 
Paris. 

Bauduin, C. (2003). Assessment of model factors and reliability index for ULS design of pile 
foundations. Proceedings of the 4th International Geotechnical Seminar on Deep Foundations on 
Bored and Auger Piles, 2-4 June, Ghent. 

Burlon, S., Frank, R., Baguelin, F., Habert, J., and Legrand, S. (2014). Model factor for the bearing 
capacity of piles from pressuremeter test results – Eurocode 7 approach. Géotechnique, 64(7), pp. 
513-525. 

Bustamante, M. and Gianeselli, L. (1981). Prevision de la capacite portante des pieux isoles sous 
charge verticale – Regles pressiometriques et penetrometriques. Bull. Lab. Ponts Chaussees, 113, 
pp. 83-108. 

EN 1997-1: 2008 Eurocode 7: Geotechnical de-sign – Part 1: General rules. 
EN-ISO 22476-1: 2012 Geotechnical investigation and testing - Field testing - Part 1: Electrical cone 

and piezocone penetration test. 
Paikowsky, S. and Tolosko, T. (1999). Extrapolation of pile capacity from non-failed load tests. US 

DOT FHWA-RD-99-170. 



Joint	TC205/TC304	Working	Group	on	“Discussion	of	statistical/reliability	methods	for	Eurocodes”	 	
–	Final	Report	(Sep	2017) 

54 
 

Appendix 2E: Model factor as a function of input parameters and revised model 

statistics (C. Tang) 
 

The following summary is based on several published studies. 
 
Top deflection of a cantilever wall in undrained clay 
Summary from: Zhang, D.M., Phoon, K.K., Huang, H.W., and Hu, Q.F. (2015). Characterization of 
model uncertainty for cantilever deflections in undrained clay. Journal of Geotechnical and 
Geoenvironmental Engineering, 141(1): 04014088, pp. 1-14. 
 
The model factor for MSD calculating the top deflection of a cantilever wall in undrained clay was 
evaluated using FEM and a database (see Table 2E-1). 
 

Table 2E-1 Summary of database for top-deflection of a cantilever wall. 

Reference Variables Range of values #N 

Zhang et al. (2015) 

Field case histories 

Wall depth D (m) 12~40 

45 

Excavation depth Hc (m) 1.5~6.9 

Excavation width B/2 (m) 6.3~75 

Wall stiffness EI (MPa/m) 119~4388 

Lateral earth pressure 

coefficient at rest K0 
1.5~6.9 

Relative undrained shear strength 

su/σ'v 
0.32~1.5 

Soil stiffness ratio Eur/su 167~756 
  #N=number of tests, which will be used throughout this Appendix. 

 
The database consists of 45 deep excavations in soft to medium-stiff clays. The clay within the 

excavation depth was regarded as homogeneous. All case histories were internally braced deep 
excavations where the cantilever-type wall deflection was observed at the initial stage of construction. 
The available soil data consists of borelog descriptions and in-situ tests [e.g. standard penetration 
test/piezocone (SPT/CPTU) for undrained shear strength su] and advanced laboratory test results (e.g. 
K0 test for K0 and triaxial test for soil stiffness Eur). 
 

Bearing capacity of strip footings on sand under general combined loading 
Summary from: 
Phoon, K. K. and Tang, C. (2015a). Model uncertainty for the capacity of strip footings under positive 
combined loading. Geotechnical Special Publication in honor of Wilson. H. Tang (in press). 
Phoon, K. K. and Tang, C. (2015b). Model uncertainty for the capacity of strip footings under 
negative and general combined loading. Proc. 12th International Conference on Applications of 
Statistics and Probability in Civil Engineering, Vancouver, Canada, July 12-15. 
 
The model factor for Eurocode 7 approach calculating the bearing capacity of strip footings on sand 
under positive and negative combined loading was evaluated using FELA and laboratory small-scale 
load tests conducted on poorly graded sand. The database includes 120 load tests (60 for dense sand 
DR=69% and 60 for medium-dense sand DR=51%) for positive combined loading and 72 load tests 
(36 for dense sand and 36 for medium-dense sand) for negative combined loading (see Table 2E-2). In 
the database, foundation width D is 0.1 m. The embedment ratio d/D was varied from 0 to 1. The load 
eccentricity e ranges from 0 to 0.15D, while the load inclination α is from 0 to 20°. 
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Table 2E-2 Summary of database for strip footings on sand under combined loading. 

Reference Variables Range of values N 

Phoon and Tang 

(2017) 

Laboratory small-scale load tests 

Positive combined loading 

Foundation width D (m) 0.1 

120 

Foundation embedment depth d/D 0, 0.5, 1 

Friction angle ϕ (°) 37.5, 40.8 

Load inclination α (°) 0, 5, 10, 15, 20 

Load eccentricity e/D 0, 0.05, 0.1, 0.15 

Phoon and Tang 

(2015) 

Negative combined loading 

Foundation width D (m) 0.1 

72 

Foundation embedment depth d/D 0, 0.5, 1 

Friction angle ϕ (°) 37.5, 40.8 

Load inclination α (°) 5, 10, 15, 20 

Load eccentricity e/D 0.05, 0.1, 0.15 

 

Table 2E-3 Summary of database for helical anchors in clay under tension loading. 

Reference Variables Range of values N 

Tang and Phoon 

(2016) 

Laboratory small-scale load tests 

Helical anchor diameter D (m) 0.033~0.15 

78 

Relative embedment depth of the 

uppermost helical plate H/D 
1~10 

Undrained shear strength su (kPa) 3~13.5 

Number of helical plates n 2~5 

Relative spacing ratio S/D 0.83~2.3 

Field full-scale tests 

Helical anchor diameter D (m) 0.2~0.345 

25 

Relative embedment depth of the 

uppermost helical plate H/D 
4~28 

Undrained shear strength su (kPa) 31~99 

Number of helical plates n 3~5 

Relative spacing ratio S/D 0.75~3 
 

Uplift capacity of helical anchors in clay 
Summary from: Tang, C. and Phoon, K. K. (2016). Model uncertainty of cylindrical shear method for 
calculating the uplift capacity of helical anchors in clay. Engineering Geology, 207, pp. 14-23. 
 
The model uncertainty of the cylindrical shear method predicting the uplift capacity of helical anchors 
in clay was characterized using FELA and a load test database (Table 2E-3). The database consists of 
78 laboratory small-scale and 25 field load tests in soft to stiff clays. 
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Bearing capacity of circular footings on dense sand 
Summary from: Tang, C. and Phoon, K. K. (2017). Model uncertainty of Eurocode 7 approach for 
bearing capacity of circular footings on dense sand. International Journal of Geomechanics, 17(3): 
04016069, pp. 1-9. 
 
The model factor for Eurocode 7 approach estimating bearing capacity of circular footings on dense 
sand (DR=70%~95%) was evaluated using FELA and 26 centrifuge tests (Table 2E-4) compiled from 
literature, where foundation diameter D varies from 0.3 m to 10 m. 
 

Table 2E-4 Summary of database of circular footings on dense sand. 

Reference Variables Range of values N 

Tang and Phoon (2017a) 

Centrifuge tests 

Foundation diameter D (m) 0.3~10 

26 Critical state friction angle ϕcv (°) 31~39.3 

Relative density of sand DR 70%~95% 
 

Bearing capacity of large circular and conical foundations on sand overlying clay 
Summary from: Tang, C., Phoon, K. K., Zhang, L., and Li, D.-Q. (2017). Model uncertainty for 
predicting the bearing capacity of sand overlying clay. International Journal of Geomechanics (just 
released), 04017015, pp. 1-14. 
The model factor for conventional approaches (the load spread method and the punching-shear 
method) calculating the bearing capacity of dense sand overlying clay was statistically evaluated 
using FELA and 62 centrifuge tests. The database consists of two parts (Table 2E-5). The first part is 
associated with four centrifuge tests for onshore foundations [foundation diameter (D) =1.5~3 m] on 
Toyoura sand (DR=88% and ϕcv=32°) overlying normally consolidated clay. The second part of the 
database was associated with 58 centrifuge tests for the peak resistance of large flat-circular footings 
(26 cases with D=6~16 m) and spudcan (32 cases with D=3~16 m) penetration in dense sand 
(DR=74%~99% and ϕcv=31°, 32°) overlying normally consolidated clay. In addition, 27 centrifuge 
tests (D=6~20 m) on dense to very loose sand (DR=24%~89%, ϕcv=31° and 32°) overlying clay were 
used for verification purposes. 

The results for the correction factor Mc (including the regression equation f and the residual part 
η), the model factor Mp for numerical methods (FEM or FELA), and the revised model factor M' for 
modified calculation models are summarized in Table 2E-6. Besides, comparisons between load tests 
and simplified calculation models with its modification multiplying by regression equation f are 
graphically presented in Figures 2E-1 to 2E-6. 

According to the results presented cited above, it is reasonable to make the following 
conclusions: 

(1) The model factor M=Xmeas/Xcal for a simplified model predicting deflection (e.g. MSD) or 
foundation capacity (e.g. Eurocode 7 or punching shear method) is generally a function of 
input parameters such as problem geometries and soil mechanical properties, which cannot 
be treated as a random variable directly. 

(2) The model factor Mp=Xmeas/Xp for a mechanically consistent numerical method (e.g. FEM or 
FELA) is usually independent of input parameters, which can be characterized as a 
lognormal random variable with a mean around 1. The COV value of Mp could be about 0.1 
at the ultimate limit state (ULS), while the corresponding value may be around 0.2 at the 
serviceability limit state (SLS). 

(3) On this basis, such a numerical method can be used to complement load tests to remove the 
statistical dependency, which is expressed as an exponential function (f) of some influential 
parameters. The performance of a simplified model can be improved by multiplying the 
established regression equation f (see Figures 2E-1 to 2E-6). The residual part η of the 
correction factor Mc=Xp/Xcal=f×η is then modelled as a lognormal random variable. It is of 
practical significance, as load tests are usually limited in geotechnical engineering. 

(4) Finally, the mean of the revised model factor M' is approximately equal to 1. However, the 
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COV value of M' at the SLS (e.g. Zhang et al. 2015) is larger than that for ULS (e.g. Phoon 
and Tang 2015, 2017; Tang and Phoon 2016, 2017a; and Tang et al. 2017a). In addition, 
when the problem geometry becomes complicated or soil is non-homogeneous, the COV 
value of M' increases (Tang et al. 2017a). 

 

Table 2E-5 Summary of database for large flat-circular footing and spudcan penetration in sand 

overlying clay. 

Reference Variables Range of values N 

Tang et al. (2017a)

Centrifuge tests 

Flat-circular footing  

30

Foundation diameter D (m) 1.5~16 

Thickness of sand layer H (m) 1.5~6.7 

Critical state friction angle ϕcv (°) 31, 32 

Relative density of sand DR 74%~92% 

Undrained shear strength at sand-clay 

interface su0 (kPa) 
8.71~24.5 

Gradient of undrained shear strength ρ (kPa/m) 0.94~3.46 

Spudcan   

Foundation diameter D (m) 3~16 

32

Cone angle α (°) 7~21 

Thickness of sand layer H (m) 3~10.5 

Critical state friction angle ϕcv (°) 31, 32 

Relative density of sand DR 74%~99% 

Undrained shear strength at sand-clay 

interface su0 (kPa) 
7.2~27.2 

Gradient of undrained shear strength ρ (kPa/m) 1.2~2.13 
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Figure 2E-1 Comparison of deflection from centrifuge tests and MSD with its modification. 
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Figure 2E- 2 Comparison of bearing capacity of strip footings on sand under combined loading from 

laboratory tests and Eurocode 7 with its modification. 
 

0 100 200 300 400 500
0

50

100

150

200

250

300

350

400

450

500

qm
 (kPa)

q c (
kP

a)

 

 

qc

q'c=fqc

 

Figure 2E-3 Comparison of uplift capacity of helical anchors in clay under tension loading from 
database and cylindrical shear method with its modification. 
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Figure 2E-4 Comparison of bearing capacity of circular footings on dense sand from database and 

Eurocode 7 with its modification. 
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Figure 2E-5 Comparison of bearing capacity of sand overlying clay from calibration database and 
punching shear method with its modification. 
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Figure 2E-6 Verification of modified punching shear method (Method 3), while Method 1 is 

failure-stress-dependent method (Hu et al. 2014) and Method 2 is original punching shear method. 
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3.1 INTRODUCTION 
 
Reliability analysis in structural and geotechnical engineering has been around for many years and 
provides the basis for the formulation and calibration of limit states design codes, such as the 
Eurocodes. In the past 10 years, reliability based design methods have become sufficiently accessible 
to serve as practical tools in a geotechnical design office, rather than being confined to research 
applications. 

Many countries are not bound by any regional economic grouping or other influences to adopt a 
particular design method or set of codes, as is the case with member states within the European Union 
and the Eurocodes. Even though Limit States Design is now the international norm, the perceived 
obscurity of the method, multiplicity of approaches and openness to interpretation are impediments to 
widespread adoption of the method. As a result, some practitioners are electing to continue using 
working stress design methods while, at the other end of the spectrum, others are advocating the use 
of reliability based design methods. 

There are several factors that need to be considered before decisions can be made regarding the 
selection of a preferred method of geotechnical design. Some such factors are suitability for routine 
design, breadth of application, design data requirements, uniform (adequate yet not excessive) levels 
of reliability, comparable output to current practice and clarity of performance requirements. 

This chapter examines the reliability of solutions to common geotechnical problems obtained 
using limit states design methods and the influence of parameter values on this reliability.  It then 
discusses the suitability of reliability-based methods for routine design purposes and the extent to 
which these methods address the perceived shortcomings of limit states design methods. 

 

3.2 COMPARISON OF DESIGN APPROACHES BY SIMPLE EXAMPLES 
 

Shortly after the release of Eurocode 7 (EN1997-1, 2004), an international workshop on the 
implementation of Eurocode 7 was held at Trinity College in Dublin (Orr, 2005). One of the purposes 
of this workshop was to compare the solutions to common geotechnical problems as prepared by 
representatives of various countries in Europe. Its legacy was an appreciation for the diversity of 
approaches and interpretations of Eurocode 7 and a set of model solutions which have been of 
considerable value to those seeking to implement the code. 

In much the same way, there is benefit in applying reliability based design to simple problems 
and comparing the solutions obtained with those from other design methods. The examples presented 
in this chapter have deliberately been kept simple as this facilitates an intuitive interpretation of the 
outcomes, unobscured by any complexities in the analysis. 

The comparisons presented here are based on an interpretation of Eurocode 7 and methods of 
selection of parameters that can be expected from a typical geotechnical practitioner for routine 
design. 
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3.2.1 Problems Analyzed 
 

The problems analysed were based on those selected for the Dublin Workshop (Orr, 2005) and are 
shown in Figure 3-1. Only problems with closed-form solutions were used. In each case, the solution 
required is a dimension that determines the adequacy of the structure, such as the width of a footing or 
the length of a pile. The nominal dimensions shown in Figure 3-1 were taken as characteristic values 
with no adjustment. 

,V VG Q 0. Strip footing – Vertical loading
GVk = 900 kN/m
QVk = 600 kN/m

Xk 1.0 standard deviations below mean

1. Square footing – Vertical loading
GVk = 900 kN
QVk = 600 kN

Xk 1.0 standard deviations below mean

,V VG Q

2. Square footing – Combined loading
GVk = 3 000 kN
QVk = 2 000 kN
QHk = 400 kN (wind)

Xk 1.0 standard deviations below mean

,V VG Q

HQ

,V VG Q

3. Piled foundation – Vertical loading
GVk = 1 200 kN
QVk = 600 kN
QHk = 0

Xk (shaft) 0.5 standard deviations below mean
Xk (base) 1.0 standard deviations below mean

 

Figure 3-1a Examples 0 to 3 (Foundations) 
 

3.2.2 Soil Type 
 

For the purposes of this study, a single soil type was chosen, namely a cohesionless sand with a deep 
water table. As such, there are only two material (soil) parameters to be considered, namely friction 
angle and density. The selected properties are given in Table 3-1. 
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Table 3-1 Assumed Soil Properties 

Soil Property Parameter Friction angle ’k Bulk density k 

Characteristic value 32o 20 kN/m3 

Distribution log-normal normal 

Coefficient of variation 0.10 0.05 

Correlation coefficient 0.2 

4. Gravity retaining wall
qk = 20 kPa

Xk 1.0 standard deviations from mean

q

5. Embedded retaining wall
qk = 10 kPa

Xk 1.0 standard deviations from mean

6. Anchored retaining wall
qk = 10 kPa

Xk 1.0 standard deviations from mean

L=?

 
Figure 3-1b Examples 4 to 6 (Retaining structures) 
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In practice, the characteristic value of a material property is determined from the mean value minus 
(or plus) a number (n) of standard deviations as selected by the designer (Schneider, 1997; Bond & 
Harris, 2008). The multiplier n depends on the number of test results available and the extent to which 
the occurrence of the limit state (i.e. failure) is dependent on the average rather than 
minimum/maximum value of the parameter. In this study, n was taken as 1.0 in all cases except 
Example 3 where n = 0.5 was used for the pile shaft resistance. This difference recognises that the 
bearing capacity of a footing could be governed by local soil conditions whereas the shaft friction 
resistance of a pile is likely to “average out” local variations in soil properties along the length of the 
pile. For the purposes of the reliability analysis, the corresponding mean value is back-figured from 
the characteristic value by applying the process in reverse. 
 

3.2.3 Loading 
 
The following loads (actions) have been considered in the examples. 
 

Table 3-2 Assumed Actions 

Action Distribution 

Permanent action (Gv) 

Variable action vertical (Qv) 

Variable action horiz. (Qh) 

Fixed value, mean value = characteristic value 

Log-normal distribution, coefficient of variation 0.25 

Gumbel distribution, coefficient of variation 0.5 (wind) 

 
The vertical and horizontal actions are assumed to be independent. An action combination factor of 
0.7 has been applied to the accompanying variable action. The vertical variable action may be 
favourable or unfavourable. The statistical distributions, coefficients of variation and ratio of 
characteristic to mean loading are based on Retief & Dunaiski (2009) and Phoon & Kulhawy (1999). 
 

3.2.4 Analysis 
 
The following approach was followed in this investigation: 

(1) Find the solution to the problem that satisfies the ultimate limit state verification requirements 
of EN1990 and EN1997 (Design approach 1, Combination 2) using the characteristic values 
of loads and material properties. 

(2) Determine the mean values of loads and material properties corresponding to the given 
characteristic values. 

(3) Using the corresponding mean values and coefficients of variation, determine the reliability 
index (β) of the solution using Monte Carlo and First Order Reliability Methods (FORM). 

(4) Determine the global factor of safety (FoS) using working stress design methods. 
In the case of Example 2 (square footing under vertical and horizontal loads), the following additional 
analyses were performed, both of which required a re-evaluation of the limit state design compliant 
solution for each new set of material properties: 

(5) Repeat of steps (1)-(4) for a range of material properties to examine the variation of β and 
FoS. 

(6) Repeat of steps (1)-(3) for a range of coefficients of variation of the material properties to 
explore the sensitivity of β to uncertainties in material properties. 

 

3.2.5 Example 2 – Vertically and Horizontally Loaded Square Footing 
 
This example, which is based on Example 2 from Orr (2005), will be discussed in detail. 

The same methodology was followed for the other examples, for which only a summary of the 
results is reported in Section 3.2.6 of this discussion document. 
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3.2.5.1 Problem Setup and Input Data 

The problem setup and input data for Example 2 is shown in Figure 3-2. 

 
3.2.5.2 LSD and WSD solutions 

The limit states and working stress design solutions for this example are given below. 

 
Table 3-3 Solutions – Example 2 

LSD Solution  WSD (average values) WSD (characteristic values) 

B = L = 3.99m 

eB = 0.49m 

B’ = 3.02m 

Rd = Ed = 5 126kN 

B = L = 3.99m 

eB = 0.21m 

B’ = 3.57m 

qf = 2 067kPa 

FoS = 6.58 

B = L = 3.99m 

eB = 0.36m 

B’ = 3.27m 

qf = 1 031kPa 

FoS = 2.60 
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 
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 


  

Figure 3-2 Input Data for Example 2 
 

3.2.5.3 Reliability Analysis 

’ ~ Log-normal 
The results of the Monte Carlo and FORM analyses of the Eurocode-compliant solution are 
summarised in Figure 3-3.  
 
Effect of ’ distribution 
The effect of different assumptions regarding the statistical distribution of the friction angle of the soil 
is summarised in Table 3-4. 
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Table 3-4 Effect of Assumed Statistical Distribution for Friction Angle 

 ’ ~ Normal ’ ~ Log-normal tan ’ ~ Log-normal* 

Monte Carlo - with correlation  (ρ’,γ = 0.20) 

Reliability Index (β) 3.26 3.59 3.59 

No. iterations 106 106 106 

No. failures 559 162 168 

FORM 

β, ρ’,γ = 0.20 3.40  3.69 3.69 

β, ρ’,γ = 0.0 3.46 3.73 3.73 

Design point, ρ’,γ = 0.20 

 QV 

 QH 

 γ 

 ’ 

 

1406 

358 

20.07 

24.61 

 

1305 

638 

20.22 

27.85 

 

1312 

622 

20.02 

27.63 

* '  adjusted to match FORM β=3.69.  ( '  = 35.41o, CoV = 0.121) 

 20

 25

 30

 35

 40

 45

 50

 55

 16  18  20  22  24  26

 
(d

eg
re

es
)

 (kN/m3)

 ( = 0.2)

MONTE CARLO
With correlation
 :        3.59
N(fail) :       162
N(iter) :    106

FORM
With correlation:
 :     3.69

Without correlation:
 :     3.73

Design Point:
(with correlation, X on figure)

QV :  1306 kN
QH :   638 kN
 :    20.22 kN/m3

 :    27.85 degrees

 
Figure 3-3 Reliability Analysis of Eurocode-compliant Solution to Example 2 

 
Effect of range of material properties 
The above analysis of Example 2 considered only a single set of ground properties. For partial factor 
limit states design to be an acceptable method of design, the target level of reliability should be 
achieved across the range of material properties likely to be encountered in practice. 

The effect of variation in the values of the soil properties is shown in Figure 3-4, in which the 
limit states design solution is evaluated for a range of ϕ’-γ values, and the corresponding level of 
reliability determined using FORM. 
 

Effect of variance in material properties 
In the same way, the target level of reliability should be achieved for the range in variance (coefficient 
of variation) of geotechnical parameters likely to occur in practice. Changing the variance of the 
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material properties affects the ratio of the characteristic value to the mean value as described in 
Section 3.2.2. 

The effect of changes in the variance of the soil properties is shown in Figure 3-5. 
 

 20
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Factor of Safety

 3.5
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 5
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 16  18  20  22  24

 (kN/m3)

L (meter)

 3
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 6
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 9(d
eg
re
es
)

 (kN/m3)

’ ~ Log-normal
(= 0.2) (= 0.0)

Factor of Safety L = B  (m)

 
Figure 3-4 Effect of Range of Material Properties on Reliability Index and FoS 

 

3.2.6 Summary of Results for Other Examples 
 
A similar examination of the reliability of Eurocode-compliant design and the corresponding factors 
of safety has been carried out for the remaining examples. Only a single set of ground parameters was 
used. Analyses to assess the effect of the range and variance of ground properties are still underway. 

The global factor of safety achieved by the Eurocode-compliant design has been calculated using 
the characteristic and mean values of the loads and material properties. The results are summarised in 
Table 3.5. 
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Table 3-5 Reliability Indices and Factors of Safety for Remaining Examples 

Example 
No. 

Variables 

Solution 

B or L 

Global Factor of Safety  Reliability Index β 

Mean Characteristic  
Monte 

Carlo 
FORM 

0 3 3.10m 5.18 2.50  3.45 3.49 

1 3 1.97m 4.86 2.40  3.46 3.51 

2 4 3.99m 6.58 2.60  3.58 3.69 

3 3 8.58m 2.76 1.73  3.35 3.36 

4 3 3.52m 6.88 3.12  3.30 3.33 

5 3 4.00m 2.34 1.63  3.39 3.40 

6 3 2.57m 1.43 1.25  3.23 3.24 
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Figure 3-5 Effect of Variance of the Material Properties on Reliability Index and FoS 
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3.2.7 Conclusions from Examples 
 
3.2.7.1 Limit States Design 
The starting point for all the above analyses was an EN1997-1 compliant, partial factor limit states 
design solution to each of the seven common geotechnical problems shown in Figure 1. Four 
significant conclusions can be drawn from the results. 

(1) The reliability indices are fairly constant for the wide range of problems considered (footings, 
piles and retaining structures). For the chosen soil properties, the reliability index varied from 
3.2 to 3.7. 

(2) Even with a wide range in material properties, the variation in reliability indices for Example 
2 was not excessive. For friction angles ranging from 20o to 40o and densities from 15kN/m3 
to 25kN/m3, combined with typical values for the coefficient of variation, the reliability 
indices varied from 3.5 to 4.2. 

(3) The reliability indices obtained are generally lower than the default target value of β = 3.8 
from the Eurocodes, but not significantly so. The way the characteristic value is chosen will 
affect the level of reliability. 

(4) In all the above analyses, the relationship between the mean value and the characteristic value 
of the material properties takes account of the expected variance of the parameter. This 
dependence comes about by selecting the characteristic value to be a multiplier of standard 
deviations from the mean value with the multiplier being dependent on the degree to which 
the occurrence of the limit state is affected by the average or the minimum properties of the 
material. The change in the selected characteristic value due to the change in the coefficient 
of variation of the material properties is, however, insufficient to compensate for the effect 
which higher variance in soil properties has on the reliability index, which is seen in Figure 
3-5 to decrease significantly with increases in the variance in soil properties. Caution should 
be exercised when using limit states design methods in ground where the friction angle in 
particular shows a high degree of variance. 

 

3.2.7.2 Working Stress Design 
Three significant observations are made regarding the factor of safely: 

(1) In contrast to the relatively modest variation in reliability index, the global factors of safety 
obtained from working stress design analyses vary widely for different problem types and 
across the range of soil properties considered. This supports the now well-established 
realisation that the global factor of safety is a poor means of assessing the reliability of a 
structure. 

(2) For the range of material properties considered in Example 2, an increase in the global factor 
of safety corresponds with a decrease in the reliability index. Thus, for example, the 
determination of allowable bearing pressure for a given global factor of safety using working 
stress methods will result in reduced levels of reliability as the friction angle of the material is 
increased. 

(3) The global factors of safety obtained when the working stress analysis is carried out using 
characteristic values of loads and material properties are closer to those traditionally used in 
practice than those obtained using mean values. The global factors of safety calculated using 
the mean values are significantly higher. This supports the view expressed by Krebs Ovesen 
and Simpson in the mid-80’s that there is not a significant difference between the 
characteristic values of material properties and the values that would typically be chosen for 
working stress design methods. 

 

3.2.7.3 Reliability Based Design 
The analyses performed demonstrate that reliability analysis can be effectively and practically applied 
to common geotechnical problems. Furthermore, FORM analyses gave results that compared well 
with those obtained using Monte Carlo simulation. Spreadsheet applications of FORM (e.g. Low & 
Tang, 2007) make this a practical tool for use in the design office, particularly for problems with 
closed-form solutions. 

One of the limitations of the reliability analyses described in this chapter is the assumption that a 
single value of a material parameter applies at all points in the soil mass and along the full length of 
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any failure surface. Consider, for example, the effect of variations in the friction angle of the soil in 
the case of the pile foundation in Example 3. The assumption made in both the FORM and Monte 
Carlo analyses is that the same friction angle applies throughout, i.e. for the calculation of both end 
bearing and shaft resistance. Thus, although variations in the strength of the ground are taken into 
account, the spatial variations and the degree to which these variations will be “averaged out” along 
the length of the pile shaft are ignored. In this respect, the approach used in limit states design is more 
appropriate in that different characteristic values are used for end bearing and shaft resistance, taking 
account of the degree to which the occurrence of the limit state is affected by the average or local 
properties of the ground. 
 

3.3 RELIABILITY BASED DESIGN–A VIABLE ALTERNATIVE TO LIMIT STATES 

DESIGN? 
 
Few informed geotechnical designers would doubt that Limit States Design methods are an 
improvement of working stress design using a global factor of safety. However, there are many 
designers who remain unconvinced that limit states design as expounded in the Eurocodes is the best 
design method available. The criticisms of the method include: 

(1) The multiplicity of design approaches and calculation models, often leading to very different 
outcomes. Although the intention of the Eurocodes was to create a set of technical rules for 
the design of construction works across CEN member states, the solutions received to design 
examples included in the 2005 International Workshop on the Evaluation of Eurocode 7 
varied significantly from country to country (Orr, 2005b). 

(2) The is a perception that the partial factors used are somewhat arbitrary and that their selection 
appears to have been based more on replicating results from the past rather than being 
calibrated against the observed performance of constructed works. This remains a problem as, 
except for elements such as piles and ground anchors which are subjected to routine testing, 
insufficient data is available for rigorous calibration of partial factors. 

(3) The perceived complexity of the method which requires the consideration of numerous limit 
states and load combinations, and the application of multiple partial factors at different stages 
of the calculation. 

(4) The subjectivity involved in the selection of characteristic values. 
Two questions arise. Firstly, does reliability based design address the perceived shortcomings of 

limit states design listed above? Secondly, are reliability based design techniques suitable for 
everyday design problems? 

Reliability based design methods do not overcome the problems associated with the selection of 
different calculation models and design assumptions which were cited by Orr (2005b) as the major 
contributor to differences in solutions from various CEN countries.  These models and assumptions 
still form part of the performance function to be evaluated in the reliability analysis. Reliability based 
methods still require the consideration of all possible modes of failure (limit states). The use of load 
combination factors is not required as the method will select the most critical combination of loads 
based on the statistical data specified by the designer. Nevertheless, the designer must still assess 
whether favourable loads will or will not be present. The method does not rely on any partial factors. 

The problem with the selection of characteristic values is replaced by the equally onerous 
challenge of selecting statistical distributions for input parameters and the spatial variation of these 
parameters within the soil mass. Designers may, however, take comfort in the fact that this challenge 
is broken down into a number of individual selections including the type of distribution, the mean, the 
variance and the covariance of the variables, for which guidance is available in the literature. 

The examples considered in Section 3.2 of this report show that FORM produces reliability 
indices very similar to those from Monte Carlo simulations, with considerably less computational 
effort. Efficient algorithms for carrying out FORM analyses are now readily available in spreadsheet 
format (Low & Tang, 2007). It is a simple matter to link the performance function used by these 
algorithms to existing spreadsheet-based calculation models which most designers have at their 
disposal, provided these have a closed-form solution. The problem becomes a little more complicated 
in cases where closed-form solutions are not available. Slope stability is an example. 

The most common problem faced by the geotechnical designer is the quality and sufficiency of 
the available geotechnical data. No increase in the sophistication of the design method can 
compensate for poor data. Thus, irrespective of the design method used, the designer is still required 
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to exercise judgement and the outcome of the analysis is only as good as that judgement and the data 
on which it is based. 
 

3.4 CONCLUSIONS 
 
Reliability analyses of Eurocode-compliant designs for a number of common geotechnical structures 
have shown remarkable consistency in the reliability index for different types of structures and ranges 
in material parameters. For the assumptions made in the analyses, the reliability indices achieved 
agree reasonably with the target reliability index given in the Eurocodes. The same cannot be said of 
working stress design methods where global factors of safety vary widely across the range of 
structures and material properties. In some instances, changes in material parameters led to an 
increase in the global factor of safety while the reliability index decreased. 

Reliability based design methods have reached the stage where they can be readily implemented 
for routine design of problems with closed-form solutions. These methods overcome some of the 
perceived shortcomings of limit states design such as the use of partial factors and identification of 
critical load combinations. They are still, however, reliant on the selection of an appropriate 
computational model and the assumptions made in the analysis. The problem with selection of 
material properties is simply shifted from that of the choice of characteristic values for use in limit 
states design to the statistical characterization of parameters for reliability based design. Problems 
with adequacy and quality of geotechnical data apply to both methods and the need for engineering 
judgement remains. 

Until such time a new design codes are developed that recognise reliability based methods and 
provide guidance on their use, these methods are likely to remain a valuable tool to be used in parallel 
to currently accepted methods including limit states design. 
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Discussion 3A – Impact of model factors and selection of statistical inputs 

KK Phoon (National University of Singapore, Singapore) 
 
I would like to offer additional views on an observation made in Section 3.3 pertaining to the 
selection of different calculation methods. Indeed, different calculation methods produce different 
solutions. Reliability analysis is just a tool to calculate the reliability index for a selected limit state 
function and the set of input random variables affecting the limit state function. The selection of an 
appropriate limit state function (which includes the capacity or movement calculation model) is not 
related to reliability analysis. It is the role of an adequately trained and qualified engineer to select the 
appropriate limit state function(s) governing the problem and the accompanying calculation 
models/input random variables that are realistic for his/her site conditions. It is also the role of an 
engineer to be mindful of methodological limitations and gaps between a model and reality when 
interpreting the solutions produced by an analysis. This is identical to the selection of appropriate 
constitutive models/input parameters in finite element analysis. The solutions produced by any 
analysis (reliability analysis or finite element analysis) are only sensible when the analysis is guided 
by sound understanding and judgment.  

The issue of different calculation models producing different answers is related to the model 
factor (or model bias in the AASHTO literature, e.g. Paikowsky et al. 2004; 2010). The model factor 
can be represented as a lognormal random variable, M with mean = M with coefficient of variation = 
COVM. The model factor in its most basic form describes the ratio between a measured response and a 
calculated response, for example, M = measured capacity/calculated capacity is widely used for 
foundations. More details are given in Chapter 2 of this report and Dithinde et al. (2016). If Qn = 
nominal capacity and Fn = nominal load, then the global factor of safety FS = Qn/Fn clearly changes 
depending on how Qn is calculated. Different calculation models are expected to be associated with 
different degrees of conservatism or different model biases. However, a corrected FS = (MQn)/Fn is 
relatively insensitive to the choice of calculation model for Qn because M partially corrects for the 
average model bias. In the same vein, the reliability index based on the performance function, G = Q – 
F depends on how Q is calculated but the reliability index based on G = (MQ) – F is almost 
insensitive to the choice of calculation model for Q. The only difference between an allowable stress 
design (FS) and reliability-based design is that the former only considers average model bias while the 
latter method can consider COVM or the probability distribution of M. However, COVM is typically 
less important than M when we consider correction for model bias. Hence, in my opinion, the 
observation made in Section 3.3 that “reliability based design methods do not overcome the problems 
associated with the selection of different calculation models …” is correct if we do not consider model 
factor, i.e. FS and reliability index are both affected by the choice of the calculation model. 

For illustration, consider a simple design example of a laterally loaded rigid bored pile: B = 1 m, 
e = 0.5 m, su is lognormally distributed with mean 50 kPa and COV = 30 to 50%, and F is lognormally 
distributed with mean = 200 kN and COV = 15%. Table 3A-1 presents the effect of capacity models 
on FS. It is evident that FS can vary between 1.7 and 3.4 for the same design. The corrected FS is 
more consistent, regardless of how the measured capacity is defined. Table 3A-2 shows that the 
required D/B to achieve a target reliability index of 3 is different even though the COV of su is the 
same for different capacity models. The application of a model factor in reliability will reduce these 
differences. Theoretically, some differences would remain, because the COV of M is different even 
though the COV of su is the same. Reliability analysis has the advantage of responding consistently to 
different uncertainties in both model factors and soil parameters. 

  
Table 3A-1. Impact of capacity model on factor of safety with and without average model factor 

correction 

Capacity model 
Factor of safety, FS = 

Hu/F MLHu/F MHHu/F 
Reese (1958) 3.1 2.8 4.3 
Broms (1964) 1.7 2.6 4.0 

Randolph & Houlsby 
(1984) 3.4 2.9 4.5 
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Notes: Hu = ultimate lateral capacity computed using limit equilibrium analysis, ML = model factor 
for lateral or moment limit defined as measured capacity; MH = model factor for hyperbolic limit 
defined as measured capacity; capacity models and average model factors for different capacity 
models given in Phoon and Kulhawy (2005). 

 
Table 3A-2. Depth to diameter ratios (D/B) and nominal (uncorrected) factors of safety (FS = Hu/F) 

required to achieve a target reliability index of  = 3 for different capacity models. 

 Reese (1958) Broms (1964) 
Randolph & Houlsby 

(1984) 

 D/B FS D/B FS D/B FS 

COV of su = 30% 

w/o model factor 4.7 2.8 6.3 2.7 4.3 2.7 

Model factor 4.7 2.8 5.5 2.1 4.6 3.0 

COV of su = 50% 

w/o model factor 6.7 4.9 8.9 4.9 6.4 4.9 

Model factor 6.4 4.5 6.9 3.2 6.3 4.8 
 

The second issue concerns the difficulties associated with the selection of statistical inputs for 
reliability analysis. From the perspective of a practitioner, I would agree with the remark that “the 
problem with the selection of characteristic values is replaced by the equally onerous challenge of 
selecting statistical distributions for input parameters and the spatial variation in these parameters 
throughout the soil mass”. Nonetheless, I would like to offer the following additional views for 
consideration: 

(1) Both selection of characteristic values and statistical inputs may be burdensome on the 
practitioner, but the latter can exploit the power of probability theory to do useful stuff such 
as updating data from comparable sites with site specific data using the Bayesian approach. It 
is useful to ponder the balance of cost and benefits.  

(2) There is no guideline on how to choose characteristic values for say a set of five input 
parameters that are correlated. Multiple input parameters are common in finite element 
analysis. Two negatively correlated parameters will mandate the choice of characteristic value 
lying below the mean to be associated with another characteristic value lying above the mean 
to maintain physical consistency (consistency with the scatter plot which is obviously “real” 
since it is simply a visual representation of measured bivariate data points – this has nothing 
to do with statistics). You cannot do this by judgment alone in the absence of any information 
on correlation. Hence, for a general problem, you cannot really avoid some statistical 
knowledge such as correlation, be it through a statistical construct such as a correlation 
coefficient or just an empirical scatter plot with no theoretical interpretation. In my opinion, 
the term “cautious estimate” is not referring to being “cautious” in the choice of the parameter 
(this implies taking value below the mean for all strength parameters), but “cautious” in its 
consideration of the effect on the limit state function (any value that moves design further 
away from limit state function). In short, there is no method to make selection of 
characteristic value less burdensome if one were to rely on judgment alone. 

(3) The challenge in selection of characteristic value is due to the attempt to sort out many 
complex and inter-related issues (uncertainties and mechanics) using judgment alone. EN 
1997−1:2004, 2.4.5.2(2) recommends that the “characteristic value of a geotechnical 
parameter shall be selected as a cautious estimate of the value affecting the occurrence of the 
limit state.” The term “cautious estimate” is related to information uncertainties. The phrase 
“value affecting the occurrence of the limit state” is related to mechanics – location and shape 
of the critical failure mechanism. 
One can ponder if judgment is meant to replace science or supplement limitations of science 
(which exists in all rational methods/models). In my opinion, the challenge in selection of 
statistical inputs is purely practical, e.g. insufficient site data to characterize a distribution, 
difficult for engineer to perform Bayesian updating etc. We can gradually reduce this 
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challenge by collecting more global data (which has been done for clays and sands, refer to 
Ching et al. 2016; Phoon et al. 2016), update limited site-specific data by the Bayesian 
method (which has been done – refer to Chapters 1, 5 and 6 of this report), provide engineer 
with a software to perform Bayesian updating automatically (some attempts have been made 
as described in Chapter 5 but more work is needed). A frequent critique that statistics is not 
applicable in geotechnical engineering due to small sample size is not quite valid if one 
adopts the Bayesian interpretation of probability. Bayes’ theorem merely ensures consistent 
adjustment in a subjective degree of belief in the presence of new evidence. I believe 
Bayesian informed reasoning is a useful complement to judgment. 
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4.1 INTRODUCTION 
 
This chapter studies the similarities and differences between the design points of the first‐order 
reliability method (FORM) and the Eurocode 7 (EC7). Nine geotechnical examples of reliability 
analysis and reliability‐based design (RBD) are discussed with respect to parametric correlations, 
sensitivity information from RBD, ultimate limit states (ULS) and serviceability limit states (SLS), 
system reliability, spatially autocorrelated properties, characteristic values, and partial factors. Focus 
is on insights from RBD and how RBD can complement EC7 design approach in some situations, but 
limitations of RBD will also be mentioned. The reliability approach used here is the first-order 
reliability method (FORM), which extends the Hasofer-Lind index to deal with correlated 
non-Gaussian random variables. An intuitive perspective of the Hasofer-Lind index, FORM and 
design point is explained next, so that the symbols and discussions in later sections can be understood. 
The FORM can be done on the EXCEL platform. With respect to ease of application, the only key 
distinction between direct reliability and partial factors is the need for engineers to provide realistic 
statistical inputs describing the uncertainties affecting the limit state function. Section 4.10 describes 
the recommended practice for determination of these statistical inputs. This practice is in line with the 
current practice of estimating soil properties based on available site investigation data and data from 
comparable sites. The main limitation of FORM is that it is less suitable for more complex system 
reliability problems. Section 4.9 describes a practical subset simulation method (again available in 
EXCEL) that can mitigate this limitation. 

The nine design examples presented in this Chapter show how reliability calculations could relieve 
engineering judgment from the unsuitable task of performance verification in the presence of 
uncertainties so that the engineer can focus on setting up the right lines of scientific investigation, 
selecting the appropriate models and parameters for calculations, and verifying the reasonableness of 
the results (Peck 1980). In this regard, the role of engineering judgment in reliability-based design is 
sharpened rather than diminished. By introducing greater realism into reliability analysis that caters to 
the distinctive needs of geotechnical engineering practice, focusing on how it can add genuine value to 
the profession, its clients, and the public, and be mindful of its limits, the discussion group believes that 
reliability analysis could play a useful complementary role in geotechnical design. 

 

4.1.1 Intuitive expanding ellipsoid perspective for Hasofer-Lind index and FORM 
 

The matrix formulation of the Hasofer-Lind (1974) index  is: 

   
T

T -1 -1i i i i

F F
i i

x -μ x -μ
β= min - - = min

σ σ 

   
   
   x x

x μ C x μ R   (4-1) 
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where x is a vector representing the set of random variables xi, µ the vector of mean values i, C the 
covariance matrix, F the failure domain, R the correlation matrix, and i the standard deviations. The 
notations “T” and “-1” denote transpose and inverse, respectively. 

The point denoted by the xi values, which minimize Eq. (4.1) and satisfies Fx , is the most 
probable failure combination of parametric values (also known as the design point). It is the point of 
tangency of an expanding dispersion ellipsoid with the limit state surface (LSS), which separates safe 
combinations of parametric values from unsafe combinations (Fig. 4-1). The one-standard-deviation 
dispersion ellipse and the -ellipse in Fig. 4-1 are tilted due to negative correlation between c and . 
The quadratic form in Eq. (4-1) appears also in the negative exponent of the established probability 
density function of the multivariate normal distribution. As a multivariate normal dispersion ellipsoid 
expands from the mean-value point, its expanding surfaces are contours of decreasing probability 
values. Hence, to obtain  by Eq. (4-1) means finding the smallest ellipsoid tangent to the LSS at the 
most probable point of failure (the design point). More details in Low (2015). 

FORM extends the Hasofer-Lind index to deal with correlated non-Gaussian random variable, as 
explained in Ang and Tang (1984), Melchers (1999), and Baecher and Christian (2003), for example. In 
FORM, one can rewrite Eq. (4-1b) as follows (Low and Tang, 2004): 
 

TN N
-1i i i i

N NF
i i

x -μ x -μ
β= min

σ σ

   
   
   x

R   (4-2) 

 
where i

N and i
N are calculated by the Rackwitz-Fiessler (1978) transformation. Hence, for correlated 

nonnormals, the ellipsoid perspective still applies in the original coordinate system, except that the 
nonnormal distributions are replaced by an equivalent normal ellipsoid, centered not at the original 
mean values of the nonnormal distributions, but at the equivalent normal mean µN. 

 
 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 

Figure 4-1 Illustration of the reliability index β in the plane where c' and ϕ' are negatively correlated. 
This perspective is also valid for non-normal distributions, when viewed as “equivalent ellipsoids”. 

 
Eq. (4-2) and the Rackwitz-Fiessler equations for i

N and i
N were used in the 

spreadsheet-automated constrained optimization FORM computational approach in Low & Tang 
(2004). An alternative to the 2004 FORM procedure is given in Low & Tang (2007), which uses the 
following equation for the reliability index : 

C
oh

es
io

n,
 c

' 

Friction angle,  ' (degrees)

UNSAFE

SAFE

c'



 one-sigma 
dispersion ellipse

c'

Mean-value
point

Design
point

-ellipse

Limit state surface: boundary 
between safeand unsafedomain

r
R

 = R/r

tan instead of  can be used in the figure above in line with EC7 
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1β min T

F






x
n R n   (4-3) 

 
The computational approaches of Eqs. (4-1b), (4-2) and (4-3) and associated ellipsoidal perspectives 
are complementary to the classical u-space computational approach, and may help reduce the 
conceptual and language barriers of FORM. 

The vectors n of Eq. (4.3) and u of the classical approach can be obtained from one another, n = 
Lu and u = L-1n, where L is the lower triangular matrix of the Cholesky decomposition of R. For 
uncorrelated random variables, L reduces to the identity matrix and hence n = u. In general, n differs 
from u, and is more information than u. 

 

4.2 DESIGN POINTS OF FORM AND EC7 
 

As shown in Fig. 4.2, the design point values in EC7, obtained by applying partial factors to 
conservative characteristic values, are in general different from FORM design point values. The 
design point in FORM reflects parametric uncertainties, sensitivities, and correlations, in a way that 
design point via EC7 cannot. Further, the FORM reliability index  affords an estimation of the 
probability of failure. Design can aim at higher target  if consequence of failure is high. More on this 
are given in the sections below. 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
 
 

Figure 4-2 Characteristic values, partial factors, design point, and design approaches (DA) in 
Eurocode 7. 

 

4.2.1 Sensitivity Information In The Design Point of FORM Reliability Analysis 
 
Figure 4.3 shows FORM reliability analysis of a strut with complex supports. Illustrative 
non-Gaussian distributions are used to test the Low and Tang (2007) Excel FORM procedure and to 

General concepts of ultimate limit state design in Eurocode 7:

Diminished resistance (ck / c, tank / ) > Amplified loadings

Characteristic values 

Partial factors

Based on characteristic values and 
partial factors for loading 
parameters.

“Conservative”, for example, 10 percentile for strength parameters, 90 
percentile for loading parameters

(if “=“, then “design point”) 

The three sets of partial factors (on resistance, actions, and material properties) are 
not necessarily all applied at the same time. 

In EC7, there are three possible design approaches:

● Design Approach 1 (DA1): (a) factoring actions only; (b) factoring materials only.

● Design Approach 2 (DA2): factoring actions and resistances (but not materials).

● Design Approach 3 (DA3): factoring structural actions only (geotechnical actions 
from the soil are unfactored) and materials.
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discuss insights. The mean value of spring stiffness k3 at point 3 is 10 N/mm, and that of the rotational 
restraint λ1 at point 1 is 500 Nmm/rad. Design point values from reliability analysis are indicated 
under the column labelled “xi

*”. 
FORM analysis reveals that the design values of λ1 and k3 hardly deviate from their mean values. 

This means that the buckling load Pcrt is insensitive to these two parameters at their mean values of 
500 and 10. In this case, the strut becomes a full sine curve, i.e. arching upwards on one side of point 
3, and downwards on the other side, when k3 = 4. Higher stiffness of k3 serves no purpose once the 
full sine wave is formed. The same conclusion of insensitivity of λ1 and k3 was reached in Coates et al. 
(1994) after much plotting via deterministic analysis. For the case in hand, sensitivity of k3 increases 
at lower values (k3 < 4) when the strut has not gone into a full sine wave yet. 

 

 
Distributions Para1 Para2 Para3 Para4 xi* units ni

Lognormal P 700 140 973.95 N 1.7667

Triangular L 800 1000 1200 1109.50 mm 1.2681

Lognormal a 500 50 539.42 mm 0.8107

BetaDist E 3 3 150000 250000 174306 N/mm2 -1.3027

Lognormal I 200 20 174.50 mm4 -1.3173

PERTDist 1 350 500 650 499.99 Nmm/rad -0.0002

Gamma k3 100 0.1 9.97 N/mm -0.0002

   Pcrt. PerFunc

2.6513 0.40% 973.95 0.000

Correlation Matrix
1 0 0 0 0 0 0

0 1 0.7 0 0 0 0

0 0.7 1 0 0 0 0

0 0 0 1 0.5 0 0

0 0 0 0.5 1 0 0

0 0 0 0 0 1 0.6

0 0 0 0 0 0.6 1

M1 = 11

P
P

R1

R3 = k3v3

R2

3 2v3

a

L

E, I

Monte Carlo:
Pf = 0.36%

(250,000 trials)

1

Spring 
stiffness k

seabed

Stiff clay
cu = 150 kPa

water

PH = 421 kN

steel pipe pile, 
d=1.3m

e = 26 m

stiff clay

23 m

Rupture 
strength Qu

Applied 
load Q

Spring 
stiffness k3

Figure 4.4 Spring suspending a 
vertical load. 

Figure 4.3 Excel-Solver reliability analysis of a strut 
with complex supports. Performance function is implicit. 

Figure 4.5. Horizontal spring at 
the head of a cantilever pile. 

  

However, similar restraints in the simple system of Fig. 4.4 and near the cantilever pile head of 
the laterally loaded pile of Fig. 4.5, would be important and sensitive parameters to the SLS of 
vertical displacement and ULS of spring rupture of Fig. 4.4, and the SLS of pile head deflection and 
the ULS of spring rupture and pile bending failure of Fig. 4.5. Partial factors of spring stiffness k 
back-calculated from reliability analysis are of different values within the same problem and across 
different problems. Hence direct FORM reliability analysis and reliability-based design (RBD) are 
preferred. Partial factors or characteristic values back-calculated from FORM will not be pursued in this 
study, except when discussing the limitations of partial factors. 
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4.3 A GRAVITY RETAINING WALL AND AN ANCHORED SHEET PILE WALL 
 

4.3.1 Reliability-based design of a gravity retaining wall 
 

In Fig. 4.6 it is assumed that rotating mode is one of the ULS to be checked. Tan, tan and ca are 
normally distributed, with mean values () and standard deviations () as shown, and with correlation 
coefficient 0.8 between tan and tan. The x* values are the design point values obtained in FORM 
reliability analysis. The column labelled n shows the values of (x*)/. 

 

H w all   soil a b
6 24 10 90 18 0.4 1.83

 Pf PerFn1 PerFn2

3.031 0.122% 0.0000 56.71

µ 
x* mean StDev n

tan ' 0.492 0.7 0.07 -2.977

tan 0.262 0.36 0.036 -2.725

ca 100 100 15 0.000

Correlation matrix
tan '  1 0.8 0

tan 0.8 1 0

ca 0 0 1

tan '  tan ca





*x

Rotating 
mode

Sliding 
mode

 

Figure 4.6 Reliability-based design of the base width b of a gravity retaining wall 
 
For the statistical inputs shown, RBD obtains a design base width b = 1.83 m for a target  index of 

about 3.0, corresponding to a probability of rotation failure Pf  (-) = 0.122%. For comparison, 
Monte Carlo simulation with 200,000 realizations using @RISK (www.Palisade.com) yields a Pf of 
0.120%. The n value of 0.0 for ca means the design value of ca (under the x* column) stays put at its 
mean value, because rotating mode is not affected by ca at all. Reliability analysis reveals input 
sensitivities. Reliability analysis with respect to the ultimate limit states of sliding and bearing capacity 
failure can be done, and system reliability for multiple limit states can be evaluated readily, for example 
using the Low et al. (2011) system reliability procedure. 

 

4.3.2 Comparison with EC7 DA1b design of base width b for rotation ULS 
 

Figure 4.7 shows EC7 Design Approach 1 Combination 2 (referred to as DA1b in this chapter) for the 
base width b with respect to the overturning ULS, via characteristic values and partial factors, starting 
from the same statistical inputs of mean values and standard deviations, but without considering 
correlations in EC7. Even though partial factors are specified, EC7 does not produce a unique design, 
but depends on how conservative the characteristic values are determined. This is not objectionable, 
for it allows flexibility in design to match the consequence of failure; in the same way that target 
reliability index can be higher or lower depending on the consequence of failure. Analogous situation 
exists for LRFD’s nominal values and load and resistance factors. 

For a design width b obtained via EC7, the value of the corresponding reliability index  is not 
unique, but depends on whether parametric correlations (if any) are modelled. To compare with the 
target  of 3.0 in RBD (Fig. 4.6), correlations should be modelled. 

EC7 Design Approach 1 Combination 1 (referred to as DA1a in this chapter) requires 
characteristic values of resistance and actions, on which partial factors are applied. If characteristic 
values are based on percentiles, one needs to know the probability distributions of actions and 
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resistance in order to estimate the upper tail (e.g. 70 percentile) characteristic value of actions and 
lower tail characteristic values of resistance (e.g. 30 percentile). For the case in hand, whether based 
on 5%/95% or 30%/70%, DA1a is satisfied; DA1b governs. 

 

xk Partial F x* xk Partial F x*

tan ' 0.5849 1.25 0.4679 tan ' 0.6633 1.25 0.5307

tan 0.3008 1.25 0.2406 tan 0.3411 1.25 0.2729

ca 75.33 1.4 53.80 ca 92.14 1.4 65.81

EC7 DA1b, 5/95 percentiles  for xk

xk = Characteristic value
x* = Design value
Computed EC7design b = 1.90 m
for which  = 3.47  if ‐
correlation is modelled, and  = 
4.36 if not.

EC7 DA1b, 30/70percentiles  for xk

Computed EC7 design b = 1.755 m

for which  = 2.53  if ‐
correlation is modelled, and  = 
3.18 if not.

0.7 0.07

0.36 0.036

100 15

tan '

tan
ca

Normal
µ 

 

Figure 4.7 Design of the base width b for rotation ULS of a gravity retaining wall, based on Eurocode 7 
Design Approach 1 Combination 2 (DA1b). 

 

4.3.3 Reliability-based design of the total height H of anchored sheet pile wall 
 

In Fig. 4.8, free-earth support method was used, with Ka based on Coulomb formula, and Kp based on 
Kerisel-Absi chart. For the statistical inputs shown, RBD for a target  =3.0 results in design H (= 6.4 + 
z* + d*) of 12.31 m, and Pf  (-) = 0.13%. For comparison, Monte Carlo simulation with 200,000 
realizations gives Pf =0.14%. For the statistical inputs shown, tan and z are sensitive parameters, as 
indicated by the n values. The n values of tan and 

 
are due largely to correlations with tan, revealed 

if uncorrelated analysis is done. The design value of , 16.13 kN/m3, is lower than its mean value of 17 
kN/m3, an apparent paradox which can be understood due to the logical positive correlation of  to sat 
and tan which both have design values below their respective mean values. If all six parameters are 
uncorrelated, the design value * will be bigger than mean . Soil on either side is assumed to be same 
source, hence the same sat must be used, with action-resistance duality. Reliability analysis yields sat

 *= 
17.32 kN/m3, which is less than the mean sat of 19 kN/m3. 

The mean embedment depth d = 12.31 – 6.4 – 2.4 = 3.51 m. The design embedment depth d* = 2.99 
m, i.e., “overdig” = 0.52m, which is determined automatically as a by-product of RBD. More 
discussions are available in Low (2005). 

 

4.3.4 Comparison with EC7 DA1b design of sheet pile total height H 
 

The EC7 DA1b design for the anchored sheet pile wall is shown in Fig. 4.9. EC7 has an “unforseen 
overdig” allowance for z, to account for the uncertainty of the dredge level. The design value of z is 
obtained from z + 0.5 m = 2.4 + 0.5 = 2.9 m, where 0.5 m is the “overdig”. Although EC7 partial 
factor of soil unit weight is specified to be 1.0, conservative characteristic values of  and sat still need 
to be estimated, and if originating from the same source, it is not logical to increase the unit weight on 
the active side while decrease the unit weight on the passive side. Also, assuming 5/95 percentiles for 
characteristic values leads to * > sat

*, which violates soil physics. 
With characteristic values at 30/70 percentiles and EC7 partial factors from DA1b, one obtains a 

design H of 12.87 m, closer to the RBD design H of 12.31 m for a target  of 3.0. A less critical 
design H of 12.64 m is obtained if one wrongly set the characteristic value of sat at the 70 percentile 
value (19.52 kN/m3) instead of at the 30 percentile value (18.48 kN/m3). 

FORM reliability analysis based on the H from EC7 design will give different  index depending 
on whether correlations are modeled (correlation matrix, Fig. 4.8) or not. 
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Correlation matrix R
x*   n  sat qs tan' tan z

Normal  16.13 17 0.9 -0.971  1 0.5 0 0.5 0 0

Normal sat 17.32 19 1 -1.677 sat 0.5 1 0 0.5 0 0

Normal qs 10.28 10 2 0.140 qs 0 0 1 0 0 0

Normal tan' 0.663 0.78 0.05 -2.336 tan' 0.5 0.5 0 1 0.8 0

Normal tan 0.310 0.35 0.023 -1.760 tan 0 0 0 0.8 1 0

Normal z 2.921 2.4 0.3 1.736 z 0 0 0 0 0 1

Ka Kah Kp Kph H d* PerFn

0.261 0.2492 5.897 5.6333 12.31 2.989 0.00

Forces Lever arm Moments  P f

(kN/m) (m) (kN-m/m) 3.01 0.13%

-31.54 4.655 -146.81

-82.31 2.767 -227.73

-152 7.855 -1194.1

-32.75 8.840 -289.47

189.34 9.81 1858.11

1

2

3

4

5

Boxed cells contain 
equations

Water table

T

Surcharge qs 

A
1.5 m

6.4 m

z

d
5

1

2

3

4

, ', 

satDredge level

d* = H  6.4  z*





*x

 

Figure 4.8 Reliability-based design of sheet pile total length H via FORM 
 

 
17 0.9

19 1

10 2

0.78 0.05

0.35 0.023

2.4 0.3


sat

qs

tan'
tan

z

Normal
xk Partial F x*

 18.48 1.00 18.48

sat 17.36 1.00 17.36

qs 13.29 1.30 17.28

tan' 0.698 1.25 0.558

tan 0.312 1.25 0.250

z NA NA 2.90

EC7 DA1b, 5/95 percentiles  for xk

xk = Characteristic value
x* = Design value
Computed  EC7 design H = 13.95 m

Note: Unrealistic that * > sat*

xk Partial F x*

 17.47 1.00 17.47

sat 18.48 1.00 18.48

qs 11.05 1.30 14.36

tan' 0.754 1.25 0.603

tan 0.338 1.25 0.270

z NA NA 2.90

EC7 DA1b, 30/70 percentiles  for xk

Computed  EC7 design H = 12.87 m.
Computed EC7 design H = 12.64 m if sat,k

wrongly set at 70 percentile value (19.52) 
instead of the 30 percentile value (18.48).

 

Figure 4.9 Eurocode 7 DA1b design of sheet pile total length H 
 



Joint	TC205/TC304	Working	Group	on	“Discussion	of	statistical/reliability	methods	for	Eurocodes”	 	
–	Final	Report	(Sep	2017) 

86 
 

4.4 A FOOTING FOUNDATION AND A LATERALLY LOADED PILE 
 

4.4.1 RBD of base width of a retaining wall against bearing capacity failure mode 
 
Figure 4.10 is similar to a case in Low and Phoon (2015), except that Qh and Qv are uncorrelated, and 
the uncertainty in tan is modelled instead of , in line with EC7 which applies partial factor to tan. 
The mean values of c’, tan, Qh and Qv are 15 kPa, 0.47, 300 kN/m and 1100 kN/m, respectively, based 
on deterministic Example 2.2 in Tomlinson (2001), which computed an Fs of 3.0 against general shear 
failure of the base of the wall when base width B is 5 m. For the statistical inputs shown, a base width B 
of 4.55 m is required to achieve a target reliability index of  = 3.0 against bearing capacity failure. The 
design value of c, 15.03 kPa, is slightly above the c mean value of 15 kPa, due to negative correlation 
coefficient of -0.5 between c and tan. For the case in hand, the design is much more sensitive to Qh 
than to Qv, with n values 2.49 versus 0.71, and much more sensitive to tan than c′, with n values -1.37 
versus 0.11, where n = (x*- N)/N, in which superscript N denotes equivalent normal mean and 
equivalent normal standard deviation of lognormal distributions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 4.10 Reliability-based design of retaining wall base width B 
 
The RBD in Fig. 4.10 assumes that the coefficients of variation of c', tan, Qh and Qv are 0.2, 0.1, 

0.15 and 0.1, respectively. It is also assumed that c’ and tan are negatively correlated (as shown in the 
correlation matrix), but Qh and Qv are uncorrelated (as befitting the horizontal earth thrust and the 
applied vertical load). 

Units:  

m, kN, kN/m,  

kN/m2, kN/m3 

 
Distr.Name x* mean StDev n Correlation matrix R
Lognormal c 15.03 15 3 0.11 1 -0.5 0 0

Lognormal tan 0.41 0.47 0.047 -1.37 -0.5 1 0 0

Lognormal Qh/m 429.82 300 45 2.49 0 0 1 0

Lognormal Qv/m 1019.7 1100 110 -0.71 0 0 0 1

B L D  eB B' eL L' q qu(x*)

4.55 25 1.8 21 1.054 2.442 0 25 417.5 417.5

ca po 

12.0224 37.8 22.856 Nq 7.967 sq sc s iq ic i

Nc 17.09 1.021 1.024 0.987 0.578 0.518 0.3235

PerFunc g(x)  N 7.313 dq dc d
0.00 3.00 1.125 1.158 1

  
Qv (kN/m)

Qh (kN/m)

D = 1.8 m
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When Qh = 0, the vertical load Qv is an unfavorable action without ambiguity. However, when Qh 
is acting and of comparable magnitude to Qv, the latter possesses action-resistance duality, because load 
inclination and eccentricity decreases with increasing Qv. RBD automatically takes this 
action-resistance (or unfavorable-favorable) duality into account in locating the design point. 
Interestingly, RBD reveals that the design value of Qv (1019.7 kN/m) is about 7.3% lower than its mean 
value of 1100 kN/m, thereby revealing the action-resistance duality of Qv when Qh is acting. 

 Note that the bearing capacity equation is approximate even for idealized conditions. Also, 
several expressions for Nγ exist. The Nγ used here is attributed to Vesić in Bowles (1996). The nine 
factors sj, dj and ij account for the shape and depth effects of foundation and the inclination effect of the 
applied load. The formulas for these factors are based on Tables 4.5a and 4.5b of Bowles (1996), which 
may differ from those in EC7. 

RBD can be done for system reliability with multiple failure modes of ULS and/or SLS, as 
illustrated for a laterally loaded pile next. 

 

4.4.2 Multi-criteria RBD of a laterally loaded pile in spatially autocorrelated clay 
 

Figure 4.11 shows a steel tubular pile in a breasting dolphin, which was analysed deterministically in 
Tomlinson (1994), and probabilistically in Low et al. (2001). Soil-pile interaction was based on the 
nonlinear and strain-softening Matlock p-y curves. At the mean input values of PH and undrained shear 
strength cu, the pile deflection y is 0.06 m at seabed, and 1 m at pile head. For reliability analysis, the PH 
was assumed to be normally distributed, with mean value 421 kN and a coefficient of variation of 25%. 
The mean cu trend is cu = 150 + 2z, kPa, with a coefficient of variation of 30%. Spatial autocorrelation 
was modelled for the cu values at different depths below seabed. The  index obtained was 1.514 with 
respect to yielding at the outer edge of the annular steel cross section. The sensitivities of PH and cu 
change with the cantilever length e. The different sensitivities from case to case are automatically 
revealed in reliability analysis and RBD, but will be difficult to consider in codes based on partial 
factors. 

A target  of 3.0 can be achieved in RBD for both ULS (bending) and SLS (assuming yLimit = 1.4 
m) using steel wall thickness t = 32mm and external diameter d = 1.42 m, Fig. 4.11(c). 

 

4.4.3 Questions and thoughts pertinent to sections 4.4.1 and 4.4.2 
 

For the footing of Fig. 4.10, how would partial factor design approaches (e.g. EC7 and LRFD) deal 
with a parameter that possesses action-resistance duality (i.e., unfavorable-favorable duality), such 
as the vertical load Qv in the presence of horizontal load Qh? 

The laterally loaded pile example of Fig. 4.11 is one of a group of piles in a breasting dolphin, with 
23 m embedment length below seabed and 26 m cantilever length in sea water. For both the bending 
ULS and the pile head deflection SLS, the design point in RBD shows decreasing sensitivity of cu with 
depth, i.e., decreasing (cu

* - cu)/cu with depth, where cu
* are the design undrained shear strength values 

at various depths obtained in RBD. How would partial factor design approaches determine the 
characteristic (or nominal) values of the undrained shear strength at different depths? Assuming 
uniform conservatism with depth in determining the characteristic cu values do not accord well with the 
different sensitivities of cu with depth as revealed by RBD, and may alter the behavior of the pile at 
ULS and SLS. 

 For ULS design (e.g. bending of pile), having obtained the conservative cu characteristic values, 
should one apply the partial factor for cu uniformly across the entire embedded portion of the pile 
despite different sensitivities revealed in RBD? 

 

4.5 EXAMPLE RELIABILITY ANALYSIS OF SOIL SLOPES 
 

4.5.1 Underwater excavated slope failure in San Francisco Bay Mud 
 

The 1970 failure of a slope excavated underwater in San Francisco Bay (Fig. 4.12) was part of a 
temporary excavation and was designed with an unusually low factor of safety to minimize 
construction costs. During construction a portion of the excavated slope failed. Low and Duncan 
(2013) analyzed it, first deterministically using data from field vane shear and laboratory triaxial tests, 
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then probabilistically, accounting for parametric uncertainty and positive correlation of the undrained 
shear strength and soil unit weight. 
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Figure 4.11 Reliability-based design of a laterally loaded pile for ULS and SLS 
 

The computed lumped factors of safety with search for critical noncircular slip surface based on 
Spencer method are 1.20, 1.16 and 1.00, based on field vane test data, trimmed 35 mm diameter and 
untrimmed 70 mm diameter specimens in UU triaxial tests, respectively. The FORM analyses and 
Monte Carlo simulations for circular slip surfaces produce probabilities of failure of about 10%, 19% 
and 46%, respectively, all unacceptably high. 

The results of both the deterministic and the probabilistic analyses are affected by biases in the 
strength measurements and interpretations. The measured strength values were affected by disturbance 
and rate of loading effects. Subtle errors were also caused by extrapolation of the undrained shear 
strength (in situ and lab tests data, available only for the upper 21 m of the Bay mud, from depth 6 m 
to depth 27 m) to the full depth of underwater excavation. Since the midpoint of a slip circular arc is 
at about the two-third depth, this means that in the slope stability analysis, half the slip surface was 
based on extrapolated strength. Nevertheless, the FORM Pf values (10%, 19% and 46%) are much 
higher than the Pf of about 0.6% for the commonly required  of 2.5, or Pf of 0.14% for a target  of 
3.0. Hence a failure was not unlikely, and did happen. 

The probability of failure from FORM should be regarded as nominal rather than precise. 
Nevertheless, RBD via FORM can detect unacceptably high Pf on the one hand, and achieve design 
aiming at a sufficiently low Pf on the other hand. 
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Figure 4.12 (a) An underwater slope failure in San Francisco Bay mud, (b) Mean trend and variations of 

undrained shear strength values, and (c) Deterministic analysis based on mean values of su, using 
Spencer method for circular and noncircular slip surfaces. 

 

4.5.2 Reliability analysis of a Norwegian slope accounting for spatial autocorrelation 
 

Spatial autocorrelation arises in geological material by virtue of its formation by natural processes 
acting over unimaginably long time. This endows geomaterial with some unique statistical features 
(e.g. spatial autocorrelation) not commonly found in structural material manufactured under strict 
quality control. 

A clay slope in southern Norway was analyzed in Low et al. (2007) using Spencer method and 
FORM, Fig. 4.13. Reliability analysis revealed that the slope is less safe when the unit weights near 
the toe are lower. This implication can be verified by deterministic runs using higher  values near the 
toe, with resulting higher factors of safety. The design point (of 24 spatially correlated cu values and 
24 spatially correlated soil unit weight values) is located automatically in reliability analysis, and 
reflects parametric sensitivity from case to case in a way specified partial factors cannot. 

The results of reliability analysis are only as good as the statistical input and reliability method 
used (e.g., FORM or SORM), in the same way that the results of deterministic analysis are only as good 
as the deterministic input and method used (e.g. Spencer method or other methods). A reliability 
analysis requires additional statistical input information which is not required in a deterministic 
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factor-of-safety approach, but results in richer information pertaining to the performance function and 
the design point that is missed in a deterministic analysis. 
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Figure 4.13 Slope reliability analysis accounting for spatially autocorrelated anisotropic undrained 
shear strength and soil unit weight. 

 

4.6 ROCK SLOPES AND TUNNELS IN ROCK  
 

4.6.1 Reliability-based design of Sau Mau Ping rock slope of Hong Kong 
 

Figure 4.14 shows the FORM reliability-based design of a two-dimensional rock slope with five 
correlated random variables, two of which obey the highly asymmetric truncated exponentials. The 
statistical inputs follow those in Hoek (2007). For zero reinforcing force T and uncorrelated 
parameters, the FORM reliability index is  = 1.556, and Pf  1 - () = 6%, in good agreement with 
the Monte Carlo Pf of 6.4% in Hoek (2007). 

With negative correlations between c and  and between z and zw/z, as shown in the correlation 
matrix R, a reinforcing force T of 257 tons (per m length of slope) inclined at  = 55 is needed to 
achieve a target reliability index β of 3.0. The most sensitive parameters for the case in hand, based on 
the values under the column labelled “n”, are the coefficient of horizontal earthquake acceleration  
and the ratio zw/z, followed by friction angle  and cohesion c of the rock joint. The design point 
values of resistant parameters c and , at 8.11 t/m2 and 29.65 respectively, are lower than their mean 
values of 10 t/m2 and 35 respectively. 

The tension crack depth z and the extent to which it is filled with water (zw/z) are negatively 
correlated. This means that shallower crack depths tend to be water-filled more readily (i.e., zw/z ratio 
will be higher) than deeper crack depths, consistent with the scenario suggested in Hoek (2007) that 
the water which would fill the tension crack in this Hong Kong slope would come from direct surface 
run-off during heavy rains. For illustrative purposes, a negative correlation coefficient of -0.5 is 
assumed between z and zw/z. 

For the reinforced rock slope of Fig. 4.14, the design point is where the 5D expanding ellipsoid 
(or equivalent dispersion ellipsoid when nonnormal distributions are involved) is tangent to the limit 
state surface, similar to the 2D case shown in Fig. 4.1. A reliability-based approach like the one 
presented here is able to locate the design point case by case and in the process reflect parametric 
sensitivities (related to the limit state surface and hence is application specific) and correlation 
structure in a way that design based on prescribed partial factors cannot. More discussions are given 
in Low and Phoon (2015). 
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Figure 4.14 A reinforcing force of 257 tons/m is required to provide the rock slope with a reliability 

index  of 3.0 
 

4.6.2 Reliability analysis of 3-D tetrahedral wedge mechanism in rock slope  
 

The analysis of the stability of wedges in rock slopes requires resolution of forces in 
three-dimensional space. The problem has been extensively treated, for example in Hoek and Bray 
(1977). The methods used include stereographic projection technique, engineering graphics, and 
vector analysis. 

Low (1989, 2007) presented compact closed form equations for analyzing the stability of 
two-joint tetrahedral wedges. In Fig. 4.15, the uncertainties of discontinuity orientations (1, 1, 2, 2), 
shear strength of joints (tan and c/h), and water pressure in joints (dimensionless parameter Gw) are 
modelled by the versatile beta general distributions which can assume non-symmetrical bounded pdf. 

The reliability analysis here assumes the means and standard deviations of tan, c/h and Gw on 
joint plane 1 are identical to those on joint plane 2. These assumptions are for simplicity, not 
compulsory. Reliability analysis yielded  = 1.924 against sliding on both planes,  = 1.389 against 
sliding on plane 1, and  > 5 for other modes. 

Although the governing failure mode at mean values is sliding on both planes, the reliability 
index  against sliding on plane 1 isin the presence of uncertainty in discontinuity orientations (1, 
1, 2, 2) more critical than that against sliding on both planes. This information would not be 
revealed in a deterministic analysis, or in a reliability analysis that considers only one failure mode. 

 

4.6.3 Reliability analysis of tunnels in rocks 
 

Low and Einstein (2013) discussed the ambiguous nature of the factor of safety of a tunnel with a roof 
wedge, Fig. 4.16, where two different definitions of the Fs are shown to be reconcilable via the 
first-order reliability method (FORM). RBD via FORM was then applied to a circular tunnel supported 
with elastic rockbolts in elasto-plastic ground with the Coulomb failure criterion (Fig. 4.16, top right). 
The spacings and length of rock bolts were designed so as to achieve a target reliability index. The 
similarities and differences between the ratios of FORM design-point values to mean values, on the one 
hand, and the partial factors of limit state design, on the other hand, are discussed. Unlike design point 
based on partial factors, the design point in FORM is obtained as a by-product of target reliability index 

Units: meter, tonne, 
tonne/m2, tonne/m3. 
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(and associated Pf), and reflects input uncertainties, sensitivities, and correlations from case to case in 
ways that design point based on rigid partial factors cannot. However, more statistical input information 
is required in RBD than in EC7. 

In its current version, EC7 covers little on the characteristic values and partial factors of rock 
engineering parameters like orientations of discontinuities, in situ stresses, and properties of joints and 
rock material. RBD is a more flexible approach in dealing with case-specific uncertainties of input 
values and can potentially complement EC7 (and LRFD). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 4.15 Reliability analysis of 3-D rock wedge with uncertain discontinuity orientations 
 

4.7 POSITIVE RELIABILITY INDEX ONLY IF THE MEAN-VALUE POINT IS IN 

THE SAFE DOMAIN 
 

In reliability analysis and reliability-based design one needs to distinguish negative from positive 
reliability index. The computed  index can be regarded as positive only if the performance function 
value is positive at the mean value point. This provides a simple check. For example, in the 
reliability-based design of the embedment depth of an anchored sheet pile wall in Fig. 4.8, the mean 
value point (prior to Excel Solver optimisation) yields a positive performance function value (cell 
PerFn > 0) for H > 10.7 m. The computed  index increases from about 0 (equivalent to a factor of 
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safety of 1.0) when H is 10.7 m to 3.0 when H is 12.3 m for the statistical inputs of Fig. 4.8. Another 
example for rock slope is given in Low (2014). 

 

A tale of two factors of safety, and reconciliation via FORM 

Figure 4.16 FORM analysis and RBD of tunnels in rocks. 
 

4.8 SYSTEM FORM RELIABILITY ANALYSIS AND RBD INVOLVING 

MULTIPLE LIMIT STATES 
 
Performance of engineering systems often involves multiple failure modes (various ULS and SLS). 
For instance, the geotechnical failure modes to be considered in the design of a semi-gravity retaining 
wall may include rotation about the toe of the wall, horizontal sliding along the base of the wall, and 
bearing capacity failure of the soil beneath the wall. Methods for estimating the bounds of system 
reliability are available. Low et al. (2011) presented a practical procedure for estimating system 
reliability based on the FORM reliability indices for individual modes and associated design points, 
illustrated by a semi-gravity retaining wall with two failure modes, and a soil slope with eight failure 
modes. 
 

4.9 EXCEL-BASED SUBSET SIMULATION, APPLICATION EXAMPLE, AND ITS 

MERITS IN EC7 
 
Subset simulation (Au and Beck 2001) is an advanced Monte Carlo Simulation (MCS) that aims to 
improve MCS’s computational efficiency, particularly at probability tails, while maintaining its 


H0 H0

S S

N N

W

R

O

h

K0p

p

x


o

o

FS1 = 10

FS2 = 1.15

FS2 = 1.30

FS1 = 30

FS1 = 20

FS2 = 1.48

FS2 = 1.60
1- dispersion 

ellipse

-ellipse

Design point (28.0, 28.3), 
the most-probable failure 
point

R

r                               

Reliability index  = R/r



Joint	TC205/TC304	Working	Group	on	“Discussion	of	statistical/reliability	methods	for	Eurocodes”	 	
–	Final	Report	(Sep	2017) 

94 
 

robustness. Subset Simulation stems from the idea that a small failure probability can be expressed as 
a product of larger conditional failure probabilities for some intermediate failure events, thereby 
converting a rare event (small probability levels) simulation problem into a sequence of more frequent 
ones. Subset Simulation is performed level by level (Fig. 4.17). The first level is direct MCS, and the 
subsequent levels utilize Markov chain Monte Carlo to generate conditional samples of interest. 
Details on Subset simulation are referred to Au and Beck (2001) and Au and Wang (2014). An Excel 
VBA Add-in called “Uncertainty Propagation using Subset Simulation” (UPSS) has been developed 
and can be obtain from https://sites.google.com/site/upssvba (Au et al. 2010, Au and Wang 2014). 
 

 

 

 
Figure 4.17 Excel-based subset simulation. 

 
UPSS divides the reliability analysis or design into three separate processes: (1) deterministic 

modeling, (2) uncertainty modeling, and (3) uncertainty propagation by Subset simulation. The 
deterministic modeling is deliberately decoupled from uncertainty modeling and propagation. This 
allows three separate processes mentioned above to proceed in a parallel fashion. The uncertainty 
modeling and propagation are performed in a non-intrusive manner, and the robustness of MCS is 
well maintained. This removes the mathematical hurdles for engineering practitioners when 
performing reliability analyses or designs. 
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4.9.1 Subset Simulation Application Example 
 

Excel-based Subset simulation has been used in reliability analysis of slope stability (Wang et al. 
2010&2011, Wang and Cao 2015) and reliability-based design of foundation (Wang and Cao 
2013&2015). A slope stability example is illustrated in this section (Figure 4.18). Details of the 
example are referred to Wang et al. (2011). 
 

 

 

Figure 4.18 Subset simulation application example. 
 
When the spatial variability of soil properties is considered in probabilistic slope stability 

analysis, the critical slip surface varies spatially. Using only one given critical slip surface 
significantly underestimates failure probability, and it is unconservative. Thus, it is necessary to 
properly model the spatial variability of the critical slip surface when the soil property spatial 
variability is considered, leading a dramatic increase in computational efforts. Subset simulation 
significantly improves computational efficiency and resolution, particularly at small probability 
levels. 

 

4.9.2 Potential merits of MCS/Subset Simulation in EC7 
 

EC7 adopts design formats similar to the traditional allowable stress design (ASD) methods. The 
factor of safety in ASD methods is replaced by a combination of partial factors in EC7, which are 
provided after some code calibration processes. Because design engineers are not involved in the 
calibration processes, many assumptions and simplifications adopted in the calibration processes are 
frequently unknown to the design engineers. This situation can lead to potential misuse of the partial 
factors that are only valid for the assumptions and simplifications adopted in the calibration processes. 
Design engineers may feel uncomfortable to accept these “black box” calibration processes blindly. In 
addition, design engineers have little flexibility in changing any of these assumptions/simplifications 
or making their own judgment because recalibrations are necessary when any assumption or 
simplification is changed. 

MCS/Subset Simulation has potential merits in the aforementioned aspects. Because MCS/Subset 
Simulation can be treated as repeated computer (Excel) executions of the traditional ASD calculations, 
good geotechnical sense and sound engineering judgment that have been accumulated over many 
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years of ASD practice are well maintained during the development of the deterministic (ASD) model 
for MCS/Subset simulation. The MCS/Subset simulation – based design can be conceptualized as a 
systematic sensitivity study which is common in geotechnical practice and familiar to design 
engineers. MCS/Subset simulation is particularly beneficial in the following situations (Wang et al. 
2016): 

(1) When the design scenario is out of the calibration domain (e.g. range of pile diameters, pile 
lengths, and statistics of geotechnical parameters) for semi-probabilistic RBD codes. In this 
case, it is inappropriate to use the load and resistance factors from semi-probabilistic RBD 
codes. 

(2) When the design model is different from the model selected during the calibration and 
development of semi-probabilistic RBD codes. In this situation, recalibration is needed and 
the resulting load and resistance factors are probably different. 

(3) When the uncertainty model [e.g. (i) decision on which variables are considered as uncertain; 
(ii) probabilistic modelling of the uncertain variables as random variables; and (iii) auto- and 
cross-correlation structures] which is an integral part of the calibration of semi-probabilistic 
RBD codes changes. 

(4) When the target failure probability needed in the design is different from the target failure 
probability pre-specified in EC7. 

(5) When the exact value of failure probability is needed in engineering applications, such as 
quantitative risk assessment and risk based decision making. 

(6) When the load and resistance are correlated. For example, the load and resistance for earth 
retaining structures and slopes are usually originated from the same sources (e.g., effective 
stress of soil) and correlated with each other. It is therefore difficult to decide whether the 
effective stress of soil or earth pressure should be regarded as a load or resistance. 

(7) When the reliability-based serviceability limit state design is required (most existing 
semi-probabilistic RBD codes only deal with ultimate limit state design of geotechnical 
structures). 

(8) When dealing with geometric uncertainties, such as orientation of joints in rock engineering. 
The geometric uncertainties cannot be easily considered by conventional partial factors. 

 

4.10 PROBABILISTIC MODELS FOR GEOTECHNICAL DATA 
 
This section provides a guide to the common question: “How to determine the statistical inputs for a 
design example?” The recommended practice is to combine all available data, both global data from 
comparable sites in the literature and local data from site investigation, using the Bayesian approach. 
A key input to the Bayesian approach is prior information (prior probability distribution). Simple 
probability models for describing single and multiple soil parameters suitable for Bayesian updating 
are discussed. It is useful to note that all the examples presented in Chapter 4 involve multiple soil 
parameters, although not all of them are strongly correlated. Extensive statistics have been compiled 
in the literature for soils (Phoon et al. 2016a, Ching et al. 2016) and model factors (Dithinde et al. 
2016). In the absence of site-specific information, these generic statistics (Section 4.10.2) together 
with the models presented in Section 4.10.1 can be adopted as the prior probability distribution.  
However, it is common practice to complement data obtained from the literature with site 
investigation data. The prior distribution (from literature) can be updated systematically by 
site-specific data (from site investigation) using the Bayesian approach. This powerful Bayesian 
approach is only applicable within a probabilistic framework. 

For example, in the absence of site-specific data but in the presence of data from comparable 
sites, the engineer may assess the effective stress friction angle  to fall between 28 and 51 based 
on the scatter of “×” markers in Fig. 4.19. This implies very loose to very dense sands, which is 
hardly informative for design. However, if site-specific SPT N-values are available and they fall in the 
vicinity of 25 blows, it is possible to reduce the uncertainty in ′ because the “” markers fall within 
a more restrictive range of 36 and 46. In many cases, this scatter is not uniformly distributed – it is 
more reasonable to restrict the range further using a 95% confidence interval from a normal 
distribution. Updating in the presence of new test data can be performed systematically and 
consistently within a powerful Bayesian framework. Ching and Phoon (2015) provide guidelines on 
how to fit geotechnical data (soil parameters and model factors) to practical probabilistic models in 
the Excel platform. Phoon (2006) provides reasons to consider the normal distribution as a default 
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distribution, particularly when the COV is “small”. One concrete way of checking suitability of 
normal distribution is to check the design point produced by FORM. If the design point is negative for 
a positive-valued parameter, then the normal distribution is not suitable. The lognormal distribution is 
often considered as the second default option. 

Chapter 1 and BEST EXCEL Add-in described in Section 4.10.3 provide more details on 
Bayesian updating. Whether one derives a single cautious estimate or a probability distribution from a 
transformation model such as Fig. 4.19, the role of engineering judgment in selecting the appropriate 
transformation model and weeding out unreasonable estimates is obviously integral to this practice 
and needs no further emphasis. 
 

 
Figure 4.19 Relationship between effective stress friction angle and SPT blowcount. 

 

4.10.1 Random vector – normal 
 

For concreteness, assume that you have an EXCEL spreadsheet containing 3 columns. Column A 
contains data for the cone tip resistance, column B contains data for the sleeve friction, and column C 
contains data for pore pressure. We further assume that these 3 measurements were taken at 100 points 
in the depth direction. Therefore, the data is contained within the block of cells from A1 to C100. If 
the data are normally distributed, we can build a 3-dimensional normal random vector which consists 
of the following collection of random variables (Z1, Z2, Z3). The random variable Z1 is for cone tip 
resistance and so forth for Z2 and Z3. It is easy to calculate the mean (μ1) and standard deviation (σ1) 
for Z1 using the EXCEL “average” and “stdev.s” functions on each column of data. The means and 
standard deviations for Z2 and Z3 are obtained in the same way. 

The key difference between a random variable and a random vector is a “correlation matrix” (Fig. 
4.20), containing the correlation between cone tip resistance and sleeve friction (δ12), the correlation 
between cone tip resistance and pore pressure (δ13), and the correlation between sleeve friction and 
pore pressure (δ23). You can get this correlation matrix directly from the data block A1:C100 using 
“Data Analysis > Correlation” under the Data tab in EXCEL. Once you obtained this correlation 
matrix, you can refer to the following sections in Ching & Phoon (2015) for simulation (Section 1.4.4) 
and Bayesian updating (Section 1.4.5). 

Computational details involving geotechnical data which are multivariate and non-normal are 
given in Section 1.6 and 1.7 of Ching & Phoon (2015) and applications to actual soil databases are 
given in Ching et al. (2016). 
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 Z1 Z2 Z3 

Z1 1 δ12 δ13

Z2 δ12 1 δ23

Z3 δ13 δ23 1 

Figure 4.20 Correlation matrix for (Z1, Z2, Z3) 
 

4.10.2 Statistical guidelines 
 

Extensive statistics have been compiled in the literature. These statistics are summarized by Phoon et 
al. (2016a) and Ching et al. (2016) for soils and Aladejare & Wang (2017) for intact rocks. The 
coefficient of variation (COV) is defined as the ratio of the standard deviation to the mean. Guidelines 
for COV for soil and rock parameters are given in Phoon et al. (2016a). It is important to note that 
COV of a soil or rock parameter can be small or large, depending on the site condition, the 
measurement method, and the transformation model. Resistance factors should be calibrated using the 
three-tier COV classification scheme shown in Table 4-1 to provide some room for the engineer to 
select the resistance factor that suits a particular site and other localized aspects of geotechnical 
practice (e.g. property estimation procedure) (Phoon et al. 2016b). A single resistance/partial factor 
ignores site-specific issues and it shares the same issues as the factor of safety approach where the 
nominal resistance has to be adjusted to handle site-specific considerations in the presence of a 
relatively constant factor of safety. For comparison, the COV for unit weight of soil, yield strength of 
steel, and compressive strength of concrete are less than 5%, 10%, and 20%, respectively. 
 

Table 4-1. Three-tier classification scheme of soil property variability for reliability calibration 
(Source: Table 9.7, Phoon & Kulhawy 2008) 

Geotechnical parameter Property variability COV (%) 

Undrained shear strength Lowa  10 - 30 

 Mediumb  30 - 50 

 Highc  50 - 70 

Effective stress friction angle Lowa   5 - 10 

 Mediumb  10 - 15 

 Highc  15 - 20 

Horizontal stress coefficient Lowa  30 - 50 

 Mediumb  50 - 70 

 Highc  70 - 90 

a - typical of good quality direct lab or field measurements 
b - typical of indirect correlations with good field data, except for the standard penetration test (SPT) 
c - typical of indirect correlations with SPT field data and with strictly empirical correlations 
 

4.10.3 EXCEL Add-in for Bayesian Equivalent Sample Toolkit (BEST) 
 
To deal with the issue of small sample size, Bayesian methods may be used to integrate limited 
measurement data in a specific site with prior knowledge (e.g., engineering experience and judgment, 
existing data from similar project sites) to provide updated knowledge on the soil parameter of interest 
(e.g., Wang et al 2016a). Because the updated knowledge might be complicated and difficult to 
express explicitly or analytically, Markov chain Monte Carlo (MCMC) simulation has been used to 
transform the updated knowledge into a large number of simulated samples of the soil parameter of 
interest, which collectively represent the soil parameter as a random variable (Wang and Cao 2013). 
An EXCEL add-in, called Bayesian Equivalent Sample Toolkit (BEST), has been developed for 
implementing the Bayesian method and MCMC simulation in a spreadsheet platform (Wang et al. 
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2016b). The BEST Add-in can be obtained without charge from 
https://sites.google.com/site/yuwangcityu/best/1. Engineering practitioners only need to provide input 
to the BEST Add-in, such as site-specific measurement data (e.g., several SPT N values) and typical 
ranges of soil parameters of interest (e.g., effective friction angle of soil) as prior knowledge. Then, 
the BEST Add-in may be executed to generate a large number of numerical samples of the soil 
parameters. Subsequently, conventional statistical analysis can be performed on these simulated 
samples using EXCEL’ built-in functions (e.g., “average” and “stdev.s”). The BEST Add-in can also 
be used for estimating soil parameters (e.g., undrained shear strength of clay) from “multivariate data” 
(e.g., SPT, CPT, and Liquidity index data) in a sequential manner using a Bayesian sequential 
updating method (Cao et al. 2016). 
 

4.10.4 Model factors 
 
The model factor for the capacity of a foundation is commonly defined as the ratio of the measured 
(or interpreted) capacity (Qm) to the calculated capacity (Qc), i.e. M = Qm/Qc. The value M = 1 implies 
that calculated capacity matches the measured capacity, which is unlikely for all design scenarios. 
Intuition would lead us to think that M takes different values depending on the design scenario. This 
intuitive observation is supported by a large number of model factor studies (Dithinde et al. 2016). 
Hence, it is reasonable to represent M as a random variable. It is straightforward to apply this simple 
definition to other responses beyond foundation capacity. For some simplified calculation models, M 
can depend on input parameters (i.e., M is not random) and additional efforts are required to remove 
this dependency (Zhang et al. 2015). A comprehensive summary of model factor statistics is presented 
by Dithinde et al. (2016). Multivariate model factors are not available at present. 
 

4.11 CONCLUSIONS 
 
The differences and similarities of the design point in RBD and EC7 were explained, and the insights 
and merits of RBD were illustrated for a strut with complex supports, a gravity retaining wall, an 
anchored sheet pile wall, a footing with inclined and eccentric loadings, a laterally loaded pile, soil 
slopes, 2D and 3D rock slopes, and tunnels in rocks. The ability of RBD to provide interesting 
information in its design point and to automatically reflect parametric uncertainties, correlations, 
loads with favourable-unfavourable duality, and case-specific sensitivities are demonstrated. 

The limitations of imprecise and/or incomplete/non-exhaustive statistical inputs on FORM results 
are similar to the limitations of approximate inputs in deterministic analysis. Statistical inputs are 
approximate and often involve judgment, due to insufficient data. Further, one may have overlooked 
some factors (e.g. human factors). Besides input data, output of RBD (or any other design approach) 
also depends on the idealized mechanical model, the failure modes considered, etc. Hence the 
probability of failure based on RBD is not exact. The Pf from RBD is at best approximate (and 
sometimes way off), and hence the Pf must be regarded as nominal rather than precise. Nevertheless, 
the examples in this chapter demonstrate that FORM analysis and RBD via FORM may be very 
useful in the following ways: 

(i) Giving warnings when the computed Pf are unacceptably high; 
(ii) Sufficiently safe designs aiming at a target reliability index (and low nominal Pf); 
(iii) Comparative assessment of the relative reliability of different designs; 
(iv) Incorporating parametric correlations and spatial auto-correlations in design; 
(v) Complement EC7 design for parameters not yet covered in the design code; 
(vi) Complement EC7 design when the sensitivities of parameters vary from case to case; 
(vii) Complement EC7 design when reality warrants correlation among parameters; 
(viii) Complement EC7 design when a parameter possesses stabilizing-destabilising duality; 
(ix) Complement EC7 when uncertainty in unit weight of soil needs to be modelled. 

That the Pf associated with a target reliability index in a RBD is more indicative and nominal 
than real should not deter the Geotech profession from appreciating the merits of RBD (like those 
listed above) and its potential complementary role to design approaches like EC7 and LRFD. The 
same limitations with respect to approximate inputs, idealizations and non-exhaustive factors also 
apply to the outputs of deterministic analysis to some extent (e.g. displacement prediction). One is 
reminded of Terzaghi’s pragmatic approach of aiming at designs such that unsatisfactory performance 
is not likely, instead of aiming at designs which would behave precisely (e.g. footing settlement of 
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exactly 25mm). It is in the same spirit that RBD aims to achieve sufficiently safe design, not at a 
precise probability of failure. For example, in a RBD for target reliability index of 3.0, the resulting 
design is not to be regarded as having exactly a probability of failure equal to (-) = 0.135%, but as 
a design aiming at a sufficiently small probability of failure (e.g. <1%). One may note that a EC7 
design (or LRFD design) via conservative characteristic (nominal) values and code-specified partial 
factors and different ULS and SLS also aims at sufficiently safe design by implicit considerations of 
parametric uncertainties and sensitivities. In comparison, the statistical data and correlations are open 
to view in RBD. Case-specific scrutiny and counter-suggestions for more reasonable statistical inputs 
and mechanical model in RBD are more likely to result in advancements and improvements. 

 

4.12 REFERENCES 
 

Aladejare, A. E., and Wang, Y. (2017). Evaluation of rock property variability. Georisk, 11(1), 22-41. 
Ang, H. S., and Tang, W. H. (1984). Probability concepts in engineering planning and design, vol. 

2-Decision, risk, and reliability. John Wiley, New York. 
Au, S. K., and Beck, J. L. (2001). Estimation of small failure probabilities in high dimensions by 

subset simulation. Probabilistic Engineering Mechanics, 16(4), 263-77. 
Au, S. K., and Wang, Y. (2014). Engineering Risk Assessment with Subset Simulation, Wiley, ISBN 

978-1118398043, 300p. 
Au, S. K., Cao, Z., and Wang, Y. (2010). Implementing advanced Monte Carlo Simulation under 

spreadsheet environment. Structural Safety, 32(5), 281-292. 
Baecher, G. B. and Christian, J. T. (2003). Reliability and statistics in geotechnical engineering. 

Chichester, West Sussex, England; Hoboken, NJ: J. Wiley. 
Bowles JE. Foundation analysis and design. 5th ed. McGraw-Hill, 1996. 
Cao, Z., Wang, Y., and Li, D. (2016). Site-specific characterization of soil properties using multiple 

measurements from different test procedures at different locations – A Bayesian sequential 
updating approach. Engineering Geology, 211, 150-161. 

Ching, J., and Phoon, K. K. (2015). Chapter 1 “Constructing Multivariate Distribution for Soil 
Parameters”. Risk and Reliability in Geotechnical Engineering, Eds. K.K. Phoon & J. Ching, 
CRC, Press, 3-76. 

Ching, J. Y., Li, D. Q., and Phoon, K. K. (2016), “Statistical characterization of multivariate 
geotechnical data”, Chapter 4, Reliability of Geotechnical Structures in ISO2394, Eds. K.K. 
Phoon & J.V. Retief, CRC Press/Balkema, 89-126. 

Coates, R. C., Coutie, M. G., and Kong, F. K., 1994. Structural analysis, 3rd Ed., Chapman and Hall, 
London. 

Dithinde, M., Phoon, K. K., Ching, J. Y., Zhang, L. M., and Retief, J. V. (2016). “Statistical 
characterization of model uncertainty”, Chapter 5, Reliability of Geotechnical Structures in 
ISO2394, Eds. K. K. Phoon & J. V. Retief, CRC Press/Balkema, 2016, 127-158. 

Hasofer A.M. and Lind N.C. (1974). Exact and invariant second-moment code format. Journal of 
Engineering Mechanics, 100, 111-21. 

Hoek, E. (2007). Practical rock engineering. http://www.rocscience.com/education/hoeks_corner. 
Hoek, E, and Bray, J. (1977). Rock slope engineering. London: Inst Mining Metallurgy. 
Low, B. K. (1997). Reliability analysis of rock wedges. J Geotechnical Geoenvironmental 

Engineering, 123(6), 498–505. 
Low, B. K. (2005). Reliability-based design applied to retaining walls. Géotechnique, 55(1), 63-75. 
Low, B. K. (2007). Reliability analysis of rock slopes involving correlated nonnormals. International 

Journal of Rock Mechanics and Mining Sciences, 44(6), 922-935. 
Low, B. K. (2014). FORM, SORM, and spatial modeling in geotechnical engineering. Structural 

Safety, 49, 56–64. 
Low, B. K. (2015). Chapter 9: Reliability-based design: Practical procedures, geotechnical examples, 

and insights, (pages 355-393) of the book Risk and Reliability in Geotechnical Engineering, CRC 
Press, Taylor & Francis group, 624 pages, edited by Kok-Kwang Phoon, Jianye Ching. 

Low, B. K. and Duncan, J. M. (2013). Testing bias and parametric uncertainty in analyses of a slope 
failure in San Francisco Bay mud. Proceedings of Geo-Congress 2013, ASCE, March 3-6, San 
Diego, 937-951. 

Low, B. K., and Einstein, H. H. (2013). Reliability analysis of roof wedges and rockbolt forces in 
tunnels. Tunnelling and Underground Space Technology, 38, 1-10. 



Joint	TC205/TC304	Working	Group	on	“Discussion	of	statistical/reliability	methods	for	Eurocodes”	 	
–	Final	Report	(Sep	2017) 

101 
 

Low, B. K., and Phoon, K. K. (2015). Reliability‐based design and its complementary role to 
Eurocode 7 design approach. Computers and Geotechnics, 65, 30-44. 

Low, B. K., and Tang, W. H. (2004). Reliability analysis using object-oriented constrained 
optimization. Structural Safety, 26(1), 69-89. 

Low, B. K., and Tang, W. H. (2007). Efficient spreadsheet algorithm for first-order reliability method. 
Journal of Engineering Mechanics, 133(12), 1378-1387. 

Low, B. K., Lacasse, S., and Nadim, F. (2007). Slope reliability analysis accounting for spatial variation. 
Georisk: Assessment and Management of Risk for Engineered Systems and Geohazards, 1(4), 
177-189. 

Low, B. K., Teh, C. I, and Tang, W. H. (2001). “Stochastic nonlinear p-y analysis of laterally loaded 
piles.” Proceedings of the Eight International Conference on Structural Safety and Reliability, 
ICOSSAR ‘01, Newport Beach, California, 17-22 June 2001, 8 pages, A.A.Balkema Publishers. 
(http://www.ntu.edu.sg/home/cbklow/conference.htm) 

Low, B. K., Zhang J. and Tang, W. H. (2011). Efficient system reliability analysis illustrated for a 
retaining wall and a soil slope. Computers and Geotechnics, 38(2), 196-204. 

Melchers, R. E. (1999). Structural reliability analysis and prediction. 2nd ed. New York: John Wiley. 
Peck, R. B. (1980). ‘Where has all the judgment gone?’ The fifth Laurits Bjerrum memorial lecture. 

Canadian Geotechnical Journal, 17(4), 584–590. 
Phoon K. K. (2006). “Modeling and Simulation of Stochastic Data”, GeoCongress, ASCE, Atlanta. 
Phoon, K. K., and Kulhawy, F. H. (2008). Serviceability limit state reliability-based design. Chapter 9, 

Reliability-Based Design in Geotechnical Engineering: Computations and Applications, Taylor & 
Francis, UK, 344-383. 

Phoon, K. K., Prakoso, W. A., Wang, Y., Ching, J. Y. (2016a). “Uncertainty representation of 
geotechnical design parameters”, Chapter 3, Reliability of Geotechnical Structures in ISO2394, 
Eds. K. K. Phoon & J. V. Retief, CRC Press/Balkema, 49-87. 

Phoon, K. K., Retief, J. V., Ching, J., Dithinde, M., Schweckendiek, T., Wang, Y., and Zhang, L. M. 
(2016b). Some Observations on ISO2394:2015 Annex D (Reliability of Geotechnical Structures), 
Structural Safety, 62, 24-33. 

Rackwitz, R., and Fiessler, B. (1978). “Structural reliability under combined random load sequences”, 
Comput. Struct. 9(5), 484–494. 

Tomlinson M. J. (1994). Pile design and construction practice. 4th ed. London: E & FN, Spon. 
Tomlinson M. J. (2001). Foundation design and construction. 7th ed. Longman Scientific. 
Wang, Y. and Cao, Z. (2013). Probabilistic characterization of Young's modulus of soil using 

equivalent samples. Engineering Geology, 159, 106-118. 
Wang, Y. and Cao, Z. (2013). Expanded reliability-based design of piles in spatially variable soil using 

efficient Monte Carlo simulations. Soils and Foundations, 53(6), 820–834. 
Wang, Y. and Cao, Z. (2015). Practical reliability analysis and design by Monte Carlo Simulations in 

spreadsheet. Chapter 7 in Risk and Reliability in Geotechnical Engineering, 301-335, edited by 
K.K. Phoon and J. Ching, CRC Press. 

Wang, Y., Akeju, O. V., and Cao, Z. (2016b). Bayesian Equivalent Sample Toolkit (BEST): an Excel 
VBA program for probabilistic characterization of geotechnical properties from limited 
observation data. Georisk, DOI: 10.1080/17499518.2016.1180399. 

Wang Y., Cao, Z. and Au, S. K. (2010). Efficient Monte Carlo Simulation of parameter sensitivity in 
probabilistic slope stability analysis. Computers and Geotechnics, 37(7-8), 1015-1022. 

Wang, Y., Cao, Z. and Au, S. K. (2011). Practical reliability analysis of slope stability by advanced 
Monte Carlo Simulations in spreadsheet. Canadian Geotechnical Journal, 48(1), 162-172. 

Wang, Y., Cao, Z., and Li, D. (2016a). Bayesian perspective on geotechnical variability and site 
characterization. Engineering Geology, 203, 117-125. 

Wang, Y., Schweckendiek T., Gong W., Zhao T., and Phoon K. K. (2016). “Direct probability-based 
design methods”. Chapter 7 in Reliability of Geotechnical Structures in ISO2394, 193-228, edited 
by K.K. Phoon and J. V. Retief, CRC Press. 

Zhang, D. M., Phoon, K. K., Huang, H. W., and Hu, Q. F. (2015). Characterization of model 
uncertainty for cantilever deflections in undrained clay. Journal of Geotechnical and 
Geoenvironmental Engineering, 141(1), 04014088. 



Joint	TC205/TC304	Working	Group	on	“Discussion	of	statistical/reliability	methods	for	Eurocodes”	 	
–	Final	Report	(Sep	2017) 

102 
 

 
Chapter 5 Selection of characteristic values for rock and soil properties using 

Bayesian statistics and prior knowledge 
 
 

Lead discusser: 

Yu Wang 

yuwang@cityu.edu.hk 

Discussers (alphabetical order): 

Marcos Arroyo, Zijun Cao, Jianye Ching, Tim Länsivaara, Trevor Orr, Kok-Kwang Phoon, 

Hansruedi Schneider, Brian Simpson 
 
 

5.1 INTRODUCTION 
 
Selection of design values for material properties is indispensable in engineering analyses and designs. 
In many engineering disciplines (e.g., structural engineering), design values are derived from 
characteristic values of material properties (e.g., concrete strength) which are often determined using 
statistical methods. In geotechnical engineering, however, it has been a challenging task to use 
statistical methods for determination of soil or rock property characteristic values, because the number 
of soil/rock property data obtained during site investigation is generally too sparse to generate 
meaningful statistics, i.e., the so-called “curse of small sample size” (Phoon 2017). Engineering 
experience and judgment are often used to supplement the limited measurement data during the 
selection of characteristic values for soil or rock properties. A Bayesian framework may be used to 
integrate the limited measurement data with engineering experience and judgment (as prior 
knowledge) in a rational and quantitative manner. This has been recognized in Eurocode 7 (EC7 (e.g., 
CEN 2004)) and referenced in the clause 2.4.5.2(10): “If statistical methods are employed in the 
selection of characteristic values for ground properties, such methods should differentiate between 
local and regional sampling and should allow the use of a priori knowledge of comparable ground 
properties.” This preliminary report aims to provide a start-of-the-art review on the use of Bayesian 
statistics and prior knowledge for selection of ground property characteristic values. The report 
focuses on routine engineering practices on conventional types of geotechnical structures with no 
exceptional risk or difficult ground or loading conditions (e.g., the Geotechnical Category 2 in EC7). 
Some design examples of such category are given by Orr (2005). Random field modeling of 
variability and uncertainty is not covered in this report. 
 

5.2 DEFINITION OF CHARACTERISTIC VALUE 
 
The definition of characteristic value for ground properties itself might be an intriguing issue, 
although detailed discussion on this issue is beyond the scope of this report and is referred to 
Schneider and Schneider (2013) and Orr (2017) for the discussion associated with EC7. There are 
different definitions of the characteristic value for ground properties in various geotechnical design 
codes around the world. For example, a mean value is generally used as nominal value (i.e., 
characteristic value) in several reliability-based design codes in North America (e.g., Phoon et al. 
2003a&b, Paikowsky et al. 2004&2010, Fenton et al. 2016). EC7 recommends that (see clause 
2.4.5.2(2)) “characteristic value of a geotechnical parameter shall be selected as a cautious estimate of 
the value affecting the occurrence of the limit state.” It further notes that (see clause 2.4.5.2(11)) “If 
statistical methods are used, the characteristic value should be derived such that the calculated 
probability of a worse value governing the occurrence of the limit state under consideration is not 
greater than 5%.” A note to this clause clarifies that “In this respect, a cautious estimate of the mean 
value is a selection of the mean value of the limited set of geotechnical parameter values, with a 
confidence level of 95%; where local failure is concerned, a cautious estimate of the low value is a 
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5% fractile.” Although the above general statement describing the characteristic value in EC7 is 
sensible, there is an under-stated difficulty in making this statement sufficiently concrete for 
codification. Orr (2017) suggested that more guidance on the selection of characteristic values is 
needed for reduce the spread of the selected characteristic values and achieve designs with more 
consistent reliability. 

Using 5% fractile, mean value or other percentage fractile as the characteristic value has their 
respective pros and cons. Although using the 5% fractile has the advantages of reflecting both the 
mean value and uncertainty (e.g., 5% fractile is equal to the mean value minus 1.65 standard 
deviations for a normal distribution) and being in harmony with the definition of the characteristics 
value for other engineering materials (e.g., concrete in structural engineering), the 5% fractile is 
difficult to quantify due to the limited ground property data obtained during a site investigation and 
often the large extent of the failure zone compared to the number of test results. In contrast, although 
the mean value may be estimated from limited ground property data with better accuracy than the 5% 
fractile, it does not provide any indication of the variability and hence the uncertainty in the ground 
properties. Therefore, the impact of different levels of ground property uncertainty on geotechnical 
design should be considered by other means within the design codes. For example, a three-tier system 
of different resistance factors for different levels of ground property uncertainty is developed in some 
design codes (e.g., Phoon et al. 2003a&b, Fenton et al. 2016, Phoon et al. 2016). Indeed, the definition 
of characteristic values for ground properties and the calibration of load and resistance (or partial) 
factors are intrinsically linked with each other. They should be compatible with each other and act 
together to properly account for the impact of different levels of ground property uncertainty on 
geotechnical design. 

No matter how the characteristic value is defined for ground properties, quantification of ground 
property uncertainty is essential. Bayesian methods described in the next section not only effectively 
tackle the difficulty in dealing with limited site-specific ground property data, but are also consistent 
with existing geotechnical practice (i.e., using engineering experience and judgment together with 
limited site-specific measurement data). 

 

5.3 BAYESIAN METHODS 
 

Under a Bayesian framework, site information available prior to a project (e.g., existing data in 
literature, engineering experience, and engineers’ expertise) may be used as “prior” knowledge and 
integrated with limited project/site-specific measurement data in a rational and quantitative manner 
(e.g., Wang et al. 2016a). Starting from the Bayes Theorem, Eq. (5-1) can be derived to update 
statistical parameters ΘP (e.g., mean μ and standard deviation σ) of a design ground property XD (e.g., 
soil effective friction angle ’), which is treated as a random variable, given a set of site-specific test 
data as (e.g., Ang and Tang 2007): 

 

     P P PP Θ Data,Prior =K P Data Θ P Θ                            (5-1) 

 
where K is a normalizing constant independent of the statistical parameters ΘP of XD; Data=XM is the 
site-specific measurement data (e.g., a set of standard penetration test SPT-N values); P(ΘP) is the 
prior distribution of the statistical parameters in the absence of site-specific measurement data; and 
P(Data|ΘP)=P(XM|ΘP) is the likelihood function. Two critical elements in the Bayesian framework are 
the formulations of prior distribution (see Section 5.4) and the likelihood function described in this 
section. 

The likelihood function P(XM|ΘP) is a probability density function, PDF, of site-specific 
measurement data XM for a given set of statistical parameters ΘP. It quantifies probabilistically the ΘP 
information provided by XM. Formulation of the likelihood function [i.e., P(XM|ΘP)] requires a 
likelihood model that probabilistically describes the relationship between the statistical parameters ΘP 
of a design property XD and project-specific test data XM. Generally speaking, the likelihood model 
shall reflect sound physical insights into the relationship between the design property XD and the 
measurement data XM and the propagation of various uncertainties that occurred during site 
characterization (e.g., Wang et al. 2016a). As much as possible insights from soil or rock mechanics 
should be incorporated in the likelihood model. For example, insights from soil mechanics suggest 
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that undrained shear strength, Su, of clay is not a fundamental soil property, but depends on the 
vertical effective stress, v’. It is therefore a better likelihood model to consider Su/v’ than Su as a 
random variable (Cao and Wang 2014). In addition, the design property XD might not be measured 
directly, and a transformation or regression model is needed to relate the measurement data XM to XD. 
The uncertainty (i.e., transformation uncertainty) associated with the transformation model should 
also be incorporated in the likelihood model. Based on the likelihood model, it can be derived that the 
measurement data XM (e.g., SPT-N value) is a random variable that has a (e.g., normal or lognormal) 
PDF (Wang et al. 2016a). Statistical parameters for the random variable XM are a function of the 
statistical parameters ΘP for the random variable XD and the transformation uncertainty. This 
establishes a link between the site-specific measurement data XM and the statistical parameters ΘP for 
the design property XD and allows the likelihood function to be formulated mathematically. Therefore, 
the statistical parameters ΘP for the design property XD (e.g., mean μ and standard deviation σ for the 
soil effective friction angle ’) can be updated from XM (e.g., SPT-N values), as shown in Eq. (5-1). 

Using the theorem of total probability (e.g., Ang and Tang 2007), the posterior PDF of the design 
property XD can be further expressed as (Wang and Cao 2013, Wang et al. 2016a): 

 

 D D P P PP X Data,Prior = P(X Θ )P(Θ Data,Prior )dΘ                       (5-2) 

 
where P(XD|ΘP) is the conditional (e.g., normal or lognormal) PDF of XD for a given set of statistical 
parameters ΘP (e.g., μ and σ); and P(ΘP|Data,Prior) is obtained from Eq. (5-1). 

When the prior knowledge and likelihood function in geotechnical practice are sophisticated, the 
XD PDF might be complicated or difficult to express analytically or explicitly. To remove this 
mathematical hurdle in engineering practice, Markov chain Monte Carlo simulation (MCMCS, e.g., 
Robert and Casella 2004) is used to depict the XD PDF numerically. The generated MCMCS samples 
collectively reflect the posterior PDF of XD [i.e., P(XD|Data,Prior) in Eq. (5-2)], and they are referred 
to as Bayesian equivalent samples of the design property XD (Wang and Cao 2013). 

It is worthwhile noting that Eq. (5-2) can also be interpreted as using the concept of the mixture 
model (e.g., McLachlan and Peel 2000, Wang et al. 2015), which considers P(XD|Data,Prior) as a 
weighted summation of the various component density functions with different distribution 
parameters. Under the concept of the mixture model, P(XD|ΘP) in Eq. (5-2) is the component density 
function and P(ΘP|Data,Prior)dΘP is the weighting function. Because P(XD|Data,Prior) is a weighted 
summation of various component density functions (e.g., normal or lognormal PDF) with different 
combinations of statistical parameters (e.g., means and standard deviations), it does not necessarily 
follow the same distribution type as the component density function, such as a normal or lognormal 
PDF (e.g., McLachlan and Peel, 2000; Wang et al., 2015). In other words, although a normal or 
lognormal PDF is often used for P(XD|ΘP), P(XD|Data,Prior) in Eq. (5-2) may turn out to be another 
distribution. 

 

5.4 SOURCES AND QUANTIFICATION OF PIROR KNOWLEDGE 
 

Geotechnical characterization of a project site often starts with a desk-study and site reconnaissance to 
collect prior knowledge (e.g., geological information, geotechnical problems and properties, 
groundwater conditions) of the project site from various sources (e.g., Trautmann and Kulhawy 1983, 
Clayton et al. 1995, Mayne et al. 2002, Cao et al. 2016). Geology information (e.g., bedrock geology, 
surficial geology, landform history) is available from existing geological records (e.g., geological 
maps, reports, and publications), regional guides, air photographs, soil survey maps and records, 
textbooks, etc. The information about geotechnical problems and parameters (e.g., soil classification 
and properties, and stratigraphy) can be collected from existing geotechnical reports (e.g., Kulhawy 
and Mayne 1990), peer-reviewed academic journals (e.g., geotechnical journals, engineering geology 
journals, and civil engineering journals), and previous ground investigation reports on similar sites. 
Information about groundwater conditions of the site (e.g., groundwater level) can be obtained from 
well records, previous ground investigation reports, topographical maps, and air photographs. In 
addition to these sources of existing information, the engineer’s expertise (i.e., domain knowledge of 
engineers obtained from education, professional training, and experience from deliberate practice 
(Vick 2002, Cao et al. 2016)) provides useful information for geotechnical site characterization. 
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Based on its quality and quantity, prior knowledge can be divided into two categories: 
non-informative and informative prior knowledge. When only limited information is obtained during 
a desk-study and site reconnaissance, the prior knowledge is relatively non-informative, such as 
typical ranges and statistics of soil and rock properties (e.g., Aladejare and Wang 2017) summarized 
in the literature or from previous engineering experience. For example, Table 5-1 summarizes typical 
 and  ranges for soil properties (Cao et al. 2016). A uniform prior distribution can be used to 
represent the non-informative prior distribution quantitatively. In general, a uniform prior distribution 
indicates that there is no preference to any value within the typical range of ground property statistics 
(e.g.,  and ) according to prior knowledge (e.g., Baecher and Christian 2003, Cao et al. 2016).  

 

Table 5-1 Typical ranges of mean and standard deviation of soil properties (Cao et al. 2016) 

 
 
Non-informative prior knowledge can be treated as the baseline uncertainty for ground properties 

in the absence of sufficient site-specific data or informative prior knowledge. It can also be used as a 
starting point for developing informative prior knowledge, and they can be used together with other 
sources of local prior knowledge, including, but not limited to, local engineering experience, 
information from previous projects in similar geological settings, and various soil and rock properties 
reported elsewhere locally. As the quality and quantity of prior knowledge improve, the prior 
knowledge becomes more and more informative and sophisticated. For informative and sophisticated 
prior knowledge from various sources, a subjective probability assessment framework (SPAF) may be 
used to facilitate synthesis and a quantitative representation of the informative prior knowledge by a 
proper prior PDF and to assist geotechnical engineers in formulating and expressing their engineering 
judgments in a quantifiable and transparent manner. Details of the SPAF steps and suggestions on 
each SPAF step to assist engineers in reducing the effects of cognitive biases and limitations during 
subjective probability assessment are referred to Cao et al. (2016). 

 

5.5 SOFTWARE 
 

Although the Bayesian framework described above is general and applicable for various soil or rock 
properties, its formulations vary for different properties when they are estimated from various in-situ 
and laboratory tests. For example, the formulation of the Bayesian equivalent sample method for 
probabilistic characterization of uniaxial compressive strength (UCS) of a rock using point load test 
[Is(50)] data (e.g., Wang and Aladejare 2015) is different from the formulation for characterizing 
effective friction angle of soil using SPT-N values (e.g., Wang et al. 2015). Therefore, extensive 
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backgrounds in probability, statistics, and simulation algorithms are needed to formulate the method 
for various properties. To remove this mathematical hurdle for geotechnical practitioners, a 
user-friendly Microsoft Excel-based toolkit, called Bayesian Equivalent Sample Toolkit (BEST), has 
been developed for implementing the Bayesian method and providing a convenient way of estimating 
reasonable statistics of different ground properties from prior knowledge and limited site-specific 
measurement data (Wang et al. 2016b).  

The BEST is developed using the Visual Basic for Applications (VBA) in a commonly available 
spreadsheet platform (i.e., Microsoft Excel), and it is compiled as an Excel Add-in for easy 
distribution and installation. The Excel-based BEST Add-in can be obtained without charge from 
https://sites.google.com/site/yuwangcityu/best/1. Step by step procedure for installing Add-in in Excel 
is provided in the Microsoft Office webpage below: 
https://support.office.com/en-us/article/Add-or-remove-add-ins-0af570c4-5cf3-4fa9-9b88-403625a0b
460. After installation of BEST, four menus (i.e., Clay Property, Sand Property, User-defined Model 
and Help) appear in the “Custom Toolbars” of “ADD-INS” in Microsoft Excel. Figure 5-1 shows the 
BEST menus in Excel 2013. The BEST Excel Add-in can be used in the same way as the Excel 
built-in functions. Details of the Excel-based BEST Add-in are given by Wang et al. (2016b). 
Moreover, an Android mobile phone APP version of the BEST has been recently developed, as shown 
Figure 5-2. A -version of the BEST APP can be obtained by scanning the QR code shown in Figure 
5-2(c) or visiting the website: 
http://server.m.pp.cn/download/apk?appId=7626085&custom=0&ch_src=pp_dev&ch=default. 

Selecting either the “Clay Property” or “Sand Property” menu in Figure 5-1 prompts the 
“Built-in Model” window. Twelve clay or sand property models reported in literature have been 
implemented as “built-in Models” in the current version of BEST, such as estimating effective friction 
angle of sand or undrained Young’s modulus of clay from SPT-N values (e.g., Kulhawy and Mayne 
1990, Ching et al. 2012). The input data required for the “Built-in Model” include site-specific 
measurement data and prior knowledge. An example of using the “Built-in Model” will be shown in 
Subsection 5.6.1. 

Selection of the “User-defined Model” menu prompts the “User-defined Model” window, which 
allows users to specify their own transformation/regression model and model uncertainty. In addition 
to site-specific measurement data and prior knowledge, users are asked to input model parameters that 
define the transformation model and model uncertainty. An example of using the “User-defined 
Model” will be shown in Subsection 5.6.2. 

 

 
Figure 5-1 BEST Add-in menus after installation 

 
After the required input data have been specified, both windows lead to the “Equivalent Sample 

Generation” window for generating a large number of equivalent samples of the design property XD as 
output. The generated equivalent samples will be recorded in a newly created Excel worksheet, 
together with their statistics, such as mean, standard deviation, 5% and 95% fractile values. 
Characteristic values of soil or rock properties of interest may be determined from these statistics. 
 



Joint	TC205/TC304	Working	Group	on	“Discussion	of	statistical/reliability	methods	for	Eurocodes”	 	
–	Final	Report	(Sep	2017) 

107 
 

 
(a) Welcome Page 

 
(b) Help Page 

 

 

 

 
 

 

 

 

(c) QR code 

Figure 5-2 BEST Android APP (-version) 

 

 

Figure 5-3 SPT-N values and undrained Young’s modulus, Eu, measured by pressuremeter tests at the 
clay site of the NGES at Texas A&M University (after Briaud 2000) 

 

5.6 APPLICATION EXAMPLES 
 
Two examples of soil and rock properties, respectively, are presented in this section to illustrate the 
Bayesian method, the BEST Excel Add-in, and how to obtain reasonable statistics for the selection of 
ground property characteristic values from limited site-specific measurement data and prior 
knowledge.  
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5.6.1 Soil property characteristic value 
 
Consider, for example, characterization of the undrained Young’s modulus Eu of clay using SPT-N 
value data obtained from the clay site of the United States National Geotechnical Experimentation 
Sites (NGES) at Texas A&M University (Briaud 2000). A limited number of SPT-N values (i.e., 5 
SPT-N values) were obtained within top stiff clay layer of the clay site, as illustrated in Figure 5-3(a). 
Figure 5-3(b) also shows the results of 42 pressuremeter tests performed in the same top clay layer at 
different depths (Briaud 2000) which are used for validating the BEST results. 

The required design property in this example is the Eu of clay, and its corresponding measured 
data are the SPT-N values. Since BEST has a “Built-in Model” that relates the SPT-N values to the Eu 
of clay (Kulhawy and Mayne 1990, Phoon and Kulhawy 1999a), this “Built-in Model” under the 
“Clay Property” menu is used in this example. This example is performed in an Excel worksheet as 
shown in Figure 5-1, which contains 5 SPT-N values in Column “C” that correspond to those in 
Figure 5-3(a). A set of non-informative prior knowledge is used in this example, and it is taken as a 
joint uniform distribution with a mean of Eu varying between 5 MPa and 15 MPa and a standard 
deviation of Eu ranging from 0.5 MPa to 13.5 MPa. This set of prior knowledge is consistent with the 
typical ranges of Eu of clay reported in the literature (e.g., Kulhawy and Mayne 1990, Phoon and 
Kulhawy 1999a&b). Using this set of prior knowledge and the 5 SPT-N values shown in Figure 5-1, 
BEST is executed to generate 30,000 equivalent samples of Eu. It takes less than 2 minutes for BEST 
to generate 30,000 equivalent samples of Eu using a personal computer with an Intel® Core i7-4790 
3.60GHz CPU and 8.0 GB RAM in the 64-bit Windows 8 operating system. Conventional statistical 
analysis, such as calculation of mean and standard deviation and plotting histogram for PDF or 
cumulative distribution function (CDF), can be easily performed on the 30,000 equivalent samples 
using built-in functions in Excel. 

Table 5-2 shows statistics of the Eu samples obtained from BEST and their comparison with 
those obtained directly from the pressuremeter tests. The Eu PDF estimated from the BEST equivalent 
samples is shown in Figure 5-4 by a solid line with triangle markers. For validation, the Eu PDF 
generated by Matlab (Wang and Cao 2013) is also included in Figure 5-4 by a dashed line with circle 
markers. The solid line with triangle markers and dashed line with circle markers are both plotted on 
the primary vertical axis which represents the PDF of Eu. The dashed line virtually overlaps with the 
solid line, indicating that the equivalent samples from BEST are in good agreement those from Matlab. 
In addition, the results from the pressuremeter tests are included in Figure 5-4 and they are plotted on 
the secondary vertical axis which represents the frequency of the pressuremeter test results. About 36 
out of the 42 pressuremeter tests results fall within the 90% inter-percentile range (3.95 MPa, 20.89 
MPa) of the equivalent Eu samples from BEST. Figure 5-5 displays the CDFs of Eu estimated from the 
cumulative frequency diagrams of the BEST equivalent samples and the 42 pressuremeter test results 
by a solid line with triangle markers and open squares, respectively. The open squares plot close to the 
solid line, indicating that the Eu CDF obtained from BEST compares favorably with that obtained 
from the 42 pressuremeter tests. This agreement suggests that the information contained in the BEST 
equivalent samples is consistent with that obtained from the pressuremeter tests. 

The Eu characteristic value may be selected from these statistics. For example, if the 
characteristic value is taken as the mean or 5% fractile value, it is about 11.5 MPa or 3.9 MPa, 
respectively, at this specific site. 

 

Table 5-2 Summary of the Eu statistics 

Statistics 
(MPa) 

BEST 
Excel 

Add-in 

MATLAB 
(Wang and 
Cao 2013) 

Pressuremeter 
Tests 

Difference between 
BEST and 

Pressuremeter Tests 
Mean 11.46 11.60 13.50 2.04 

Standard deviation 6.00 6.00 7.50 1.50 
 

5.6.2 Rock property characteristic value 
 

Consider, for example, characterization of the uniaxial compressive strength (UCS) of a granite 
deposit from point load test [Is(50)] data. Table 5-3 summarizes laboratory test results of granite at the 
Malanjkhand Copper Project in the State of Madhya, Pradesh, India (Mishra and Basu 2012). 
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The “User-defined Model” menu in BEST is used in this example. The design property of 
interest is the UCS, and the measurement data (i.e., the input data for BEST) are the Point load, Is(50), 
data. Note that the UCS data in the third Column of Table 5-3 are NOT the input to the BEST add-in, 
but are only used for comparing and validating the results obtained from the BEST add-in. A set of 
non-informative prior knowledge of the UCS statistical parameters is used in this study, and it is taken 
as a joint uniform distribution with a mean UCS varying between 121 MPa to 337 MPa and a standard 
deviation UCS ranging from 0 MPa to 36 MPa (Wang and Aladejare 2015). 

 
Table 5-3 Laboratory test results of granite collected from Malanjkhand Copper Project in the State of 

Madhya, Pradesh, India (after Mishra and Basu 2012) 

 

 
Figure 5-4 Eu PDF and frequency plots               Figure 5-5 Eu CDF plot 

 

Table 5-4 Summary of the UCS statistics 

Statistics 
(MPa) 

BEST 
Add-in 

MATLAB 
(Wang and 

Aladejare 2015) 

Compression 
Test 

Difference between 
BEST and 

Compression Test 
Mean 148.65 147.80 150.10 2.07 

Standard deviation 17.13 18.70 28.30 9.25 

(2013)

(2013)
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Figure 5-6 UCS PDF and frequency plots            Figure 5-7 UCS CDF plot 
 
In addition to the Is(50) data and prior distribution, a transformation model also needs to be 

defined in BEST. Wang and Aladejare (2015) have performed a model selection study using the Is(50) 

data and prior knowledge and found that the regression developed by Chau and Wong (1996) is a 
suitable model for this specific site. Their regression is expressed as: 

 

 50Is =0.061UCS+ε                             (5-3) 

 
where  represents the model uncertainty and follows a normal distribution with a zero mean and 
standard deviation σε=2.073.  

Using the prior knowledge, Is(50) data and Eq. (5-3), BEST is executed to generate 30,000 
equivalent samples of UCS. The estimated mean and standard deviation of the UCS equivalent 
samples from BEST Add-in is shown in Table 5-4. These statistics are compared with those obtained 
from laboratory compression tests (Mishra and Basu 2012) or Matlab (Wang and Aladejare 2015). 
The UCS PDF and CDF are constructed and displayed in Figures 5-6 and 5-7, respectively, by a solid 
line with triangle markers. The UCS PDF and CDF obtained from Matlab (Wang and Aladejare 2015) 
are also included in Figures 5-6 and 5-7 by a dashed line with circle markers. In Figure 5-6, the solid 
line with triangle markers and dashed line with circle markers are both plotted on the primary vertical 
axis which represents the PDF of UCS. In both figures, the dashed line virtually overlaps with the 
solid line, indicating that the equivalent samples from BEST are in good agreement with those from 
Matlab (Wang and Aladejare 2015). In addition, the 20 compression test results obtained from the 
same site (i.e., UCS values from Table 5-3) are included in Figure 5-6 and they are plotted on the 
secondary vertical axis which represents the frequency of the test results. Figure 5-6 shows that 16 out 
of 20 UCS values from laboratory compression tests fall within the 90% inter-quartile range of the 
equivalent samples (121 MPa and 177 MPa) generated from BEST. The CDF of the 20 compression 
tests results is also included in the CDF plot (see Figure 5-7) and it shows that the CDF estimated 
from the equivalent samples is consistent with that from laboratory compression tests. This suggests 
that the BEST Add-in performs satisfactorily in obtaining reasonable statistics and probability 
distributions of ground properties using prior knowledge and limited measurement data. 

The UCS characteristic value may be selected from the statistics above. For example, if the UCS 
characteristic value is taken as the mean or 5% fractile value, it is about 148 MPa and 121 MPa, 
respectively, at this specific site.  

 

5.7 CONCLUDING REMARKS 
 

This report summarized some recent developments on Bayesian statistics and prior knowledge in 
geotechnical site characterization, and particularly focuses on selection of characteristic values for soil 
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or rock properties in engineering practice. It covers the Bayesian equivalent sample algorithm, 
quantification of prior knowledge, user-friendly software in Excel, and application examples. The 
Bayesian method and software are developed for facilitating selection of ground property 
characteristic values in routine engineering practices, such as designing a foundation or retaining wall 
based on a limited number of SPT-N values obtained from a project site.  

It is also worthwhile to note that the “User-defined Model” in BEST Add-in is applicable for the 
case of direct measurement of a design property. When there are a limited number of direct 
measurements of a design property (e.g., UCS), these direct measurement data can also be used as 
input to BEST and integrated with prior knowledge to generate a large number of equivalent samples 
of the design property.  
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Discussions and Replies 

 
 
During the preparation of this report, many valuable and insightful comments and suggestions have 
been gratefully received. Some of them have been incorporated in this final draft report, including 
those made by Marcos Arroya, Zijun Cao and Trevor Orr, and hence, they do not appear in this 
section. The other comments and suggestions are listed below by the date they were received.  

 
Discussion by Tim Länsivaara (Tampere University of Technology, Finland) 
I think this is a very important issue and it would be great to have some progress in the form on 
guidelines in the determination of characteristic values. I think it would be good to first also discuss 
what is the definition of a characteristic value. Personally I don't think that the definition in Eurocodes 
as a 5% fractile value is a very good one. 

 
Reply by Yu Wang (City University of Hong Kong, Hong Kong) 
This draft final report contains a section (i.e., Section 5.2) on the definition of characteristic value. 
However, the definition of characteristic value for ground properties itself might be an intriguing issue, 
and detailed discussion on this issue is beyond the scope of this report, which focus on using Bayesian 
statistics and prior knowledge to facilitate the proper selection of characteristic value for a given 
definition of characteristic value. Detailed discussion on definition of characteristic value in EC7 is 
referred to Schneider and Schneider (2013) and Orr (2017). 

 
Discussion by KK Phoon (National University of Singapore, Singapore) 
Some observations on characteristic value 
EN 1997−1:2004, 2.4.5.2(2) recommends that the “characteristic value of a geotechnical parameter 
shall be selected as a cautious estimate of the value affecting the occurrence of the limit state.” Much 
attention has been focused on how to obtain a “cautious estimate”. For example, EN 1997−1:2004, 
2.4.5.2(11) notes that “If statistical methods are used, the characteristic value should be derived such 
that the calculated probability of a worse value governing the occurrence of the limit state under 
consideration is not greater than 5%.” A note to this clause clarifies that “In this respect, a cautious 
estimate of the mean value is a selection of the mean value of the limited set of geotechnical 
parameter values, with a confidence level of 95%; where local failure is concerned; a cautious 
estimate of the low value is a 5% fractile.”  Less attention is focused on the “value affecting the 
occurrence of the limit state”. 

In my opinion, the general statement describing the characteristic value “as a cautious estimate of 
the value affecting the occurrence of the limit state” is sensible. 

However, there is an under-stated difficulty in making this statement sufficiently concrete for 
codification. 

We acknowledge the critical role of engineering judgment.  Sensibility and reality checks on all 
design aspects are clearly dependent on informed judgment. This discussion focuses only on those 
numerical aspects that probabilistic methods can add value to the estimation of the characteristic 
value. 

In my opinion, it is crucial to examine the following 2 elements: (1) “value affecting the 
occurrence of the limit state” and (2) “cautious estimate” separately. 

 
Value affecting the occurrence of the limit state 
One can visualize the first element “value affecting the occurrence of the limit state” more clearly by 
assuming there is no uncertainty.  In other words, we only look at one realization of a random field.  
It can be spatially heterogeneous or even spatially homogeneous in horizontal and/or vertical 
directions when the scales of fluctuation are large in those directions.  We can assume we have 
sufficient direct measurements to safely ignore transformation and statistical uncertainties. Under this 
ideal deterministic condition, the first element is a question in mechanics. 

Consider a bored pile as a concrete example. One can argue that the side resistance depends on 
the average strength in each layer supporting the pile.  The tip resistance can conceivably be seen as 
depending on the average strength below one diameter of the tip.  The mobilized strength “value” is 
related to the average over an influential volume of soil. 
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Consider a slope stability problem as a second example.  For a homogeneous slope, the 
mobilized strength along the critical slip surface can be viewed as another average of a homogeneous 
soil mass. For a heterogeneous slope, the same argument applies, but an intriguing difficulty arises in 
this instance.  If an engineer analyses this slope with characteristic values in each layer estimated 
from borehole/field test data (however they are selected), the relative magnitude of the characteristic 
values can affect the location of the critical slip surface emerging from a mechanical analysis, say 
limit equilibrium or finite element analysis. This slip surface may or may not be the same as the one 
emerging from a finite element analysis adopting the strength reduction approach. 

The central difficulty is that the “occurrence of the limit state” is an output of a mechanical 
analysis; it is not linked to borehole/field test data (input) in a straightforward way although an 
experienced engineer could make an informed guess.  An inexperienced engineer may judge 
incorrectly without guidance from a mechanical analysis. 

 
Cautious estimate 
The second element “cautious estimate” only arises in the presence of uncertainty.  Spatial variability 
and a range of uncertainties (transformation, statistical, etc.) allow a range of possible values and 
possible scenarios to exist, because measured data are too limited to restrict a property to a single 
value and a profile to a single scenario. However the “value affecting the occurrence of the limit state” 
is defined, it is clear that it will also take a range of values in the presence of uncertainty, i.e. it is a 
random variable. 

The key point is that this random variable is not necessarily the same as the random variable 
describing a soil property at a “point”. 

If one accepts the average along the pile shaft as the “value affecting the occurrence of the limit 
state”, then the relevant random variable is the spatial average over the length of the shaft.  If one 
further accepts that a customarily 95% confidence level is sufficient, that is select a threshold value so 
that the actual value will exceed this threshold value with 95% probability, then this definition is 
partially consistent with the statement “a cautious estimate of the mean value is a selection of the 
mean value of the limited set of geotechnical parameter values, with a confidence level of 95%”.  
This definition is also consistent with a 5% quantile (or fractile) of the spatial average (in the 
reliability literature). 

The key difference is that the spatial average is a function of the length of the shaft while this 
length effect is not explicitly stated with reference to the “mean” in EN 1997−1:2004, 2.4.5.2(11).  It 
goes without saying that the spatial average and the mean are affected by statistical uncertainty and 
this is related to the number of measurements. 

For the statement “where local failure is concerned, a cautious estimate of the low value is a 5% 
fractile”, it is somewhat ambiguous in probabilistic terms, but my interpretation is that EN 
1997−1:2004, 2.4.5.2(11) is referring to 5% quantile (or fractile) of the soil property at a “point”. 

ISO2394:2015 (Annex D) Section D.5.5 discusses the need to clarify the mechanical and 
probabilistic aspects of the characteristic value (refer to excerpt below). 

Closing thoughts for discussion 
1. Statistical analysis of site information typically produces the statistics (mean, coefficient of 

variation) for a soil property at a “point”. The “point” random variable described by these 
statistics is not the same as the “mobilized” random variable “affecting the occurrence of the 
limit state”. To be specific, if the limit state involves bearing capacity, the “mobilized” 
random variable appearing in the bearing capacity equation is not the same as the “point” 
random variable. In other words, the “mobilized” random variable is the one relevant to the 
resistance/response calculation model. 

2. The “occurrence of the limit state” is an output of a mechanical analysis. It is not 
straightforward to define this “mobilized” random variable from input soil data alone. This 
definition can depend on the limit state. EN 1997−1:2004, 2.4.5.2(11) already noted that the 
distinction between non- local and local failures. In my opinion, more research is needed. 
The best one can hope for is to define a “mobilized” random variable so that it approximates 
the probabilistic solution from a mechanical analysis (say random finite element analysis) 
with reasonable accuracy. 

3. In my opinion, there are merits to replace term “mean” stated in EN 1997−1:2004, 2.4.5.2(11) 
by the “spatial average”: 
a. “Mean” is a statistics for a set of measurements.  It does not focus the attention of the 

engineer on the limit state. The spatial average depends on the averaging domain 
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(line/surface/volume) where the limit state is expected to take place. 
b.  One concrete improvement is that the characteristic value will depend on the size of the 

averaging domain (e.g. length of the pile shaft) if we refer to “spatial average”. 
c.  The uncertainty in the mean only depends on the number of measurements (statistical 

uncertainty). Spatial average can include other sources of uncertainties, including 
statistical uncertainty (see #7 below). In this sense, it is a more general and more 
physically meaningful concept. 

4. Even the classical spatial average (Vanmarcke 1977) is an approximate solution, because the 
average along the critical slip path/surface is not the same as the average along a fixed 
prescribed path/surface. The former path/surface is partially affected by the distribution of 
“weak zones” in a spatially varying soil mass, which changes from realization to realization. 
The literature says that the classical spatial average is reasonable if the scale of fluctuation 
does not take a “critical” value (Ching & Phoon 2013; Ching et al. 2014, 2016a).  Hence, 
the spatial average can be retained as a first-order approximation of the mobilized random 
variable for the time being. The 5% fractile of this spatial average can be used as a more 
concrete definition of the characteristic value for the time being, when it is suitably qualified. 

5. For limit states not governed by spatial averages, e.g. local failure, seepage, etc., more 
research is needed to clarify if the “mobilized” and “point” random variables are the same. 

6. From the perspective of a “mobilized” random variable, the terms “confidence level of 95%” 
and “5% fractile” are the same. I would recommend harmonizing these terms in in EN 
1997−1:2004, 2.4.5.2(11) to “5% fractile of the mobilized random variable”.  The 
mobilized random variable can be approximated by the spatial average or other random 
quantities depending on the occurrence of the limit state. 

7. The coefficient of variation of the mobilized random variable is affected by statistical 
uncertainty (due to limited measurements), spatial variability (due to spatial extent of limit 
state), measurement error (due to measurement), and transformation uncertainty (due to 
conversion from measurements to desired properties). Statistical uncertainty is already 
covered in EN 1997−1:2004, 2.4.5.2, but extensive research has shown that other sources are 
present (Ching et al. 2016b; Phoon et al. 2016). 
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Excerpt from ISO2394:2015 General principles on reliability for structures, Annex D Reliability 

of Geotechnical Structures 
 
D.5.5   Characteristic value 
The concept of a “characteristic value” is intrinsically linked to semi-probabilistic formats, 

particularly the partial factor approach. In this approach, using the ultimate limit state as an example, 
a “characteristic value” for a soil parameter (e.g., undrained shear strength), is divided by a strength 
partial factor to produce a “design” value  and the geotechnical capacity based on this design value 
should be larger than the design load (characteristic load multiplied by a load factor). 

The soil parameter must be defined such that it is relevant to the limit state equation. For 
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example, if a single undrained shear strength parameter appears in a slope stability equation, then the 
relevant physical definition is the spatial average along the most critical failure path. It is neither the 
undrained shear strength at a point in the soil mass nor a spatial average along a prescribed line in the 
soil mass. The emphasis in the geotechnical literature is on clarifying this physical aspect of the 
characteristic value, which is justifiably so. 

It is necessary to make clear the physical meaning of the characteristic soil parameter before the 
uncertainty aspect could be rationally considered. For illustration, the characteristic undrained shear 
strength for the shaft friction of a pile is the spatial average along the length of the pile, while the 
characteristic undrained shear strength for the end bearing of a pile is the spatial average within a bulb 
of soil below the pile tip. When reliability analysis is carried out, the performance function will 
contain two random variables following two distinct probability distributions for these spatial 
averages. 

When semi-probabilistic design is carried out, it would be necessary to select a single value 
characteristic of each probability distribution. This value may refer to the mean or to the lower 5% 
quantile. The statistical estimation of these characteristic values is subject to the same statistical 
uncertainties underlying the probability distributions appearing in reliability analysis. Clearly, this 
statistical aspect of the characteristic value is distinctive from the physical aspect of the characteristic 
value. 

In principle, partial factors can be calibrated to achieve a prescribed target reliability index for 
any statistical definition of the characteristic value. In practice, it is known that a partial factor 
calibrated for the mean value could change significantly if the COV of the input random variable 
changes. This limitation is less severe for a partial factor calibrated using say the lower 5%-quantile. 
Hence, if the COV of an input random variable varies over a wide range within the scope of design 
scenarios covered in a design code and if there is a practical need to simplify presentation of a partial 
factor as a single number rather than as a function of COV, the lower 5% quantile definition is 
preferred (except in the case considering non-linear responses where special considerations must be 
made). It is useful to reiterate that the key function of a RBD code is to achieve a prescribed target 
reliability index (typically a function of limit state and importance of structure) over a range of 
commonly encountered design scenarios and not for a specific design scenario. The statistical 
definition of the characteristic value should be viewed within this broader context of what a RBD 
code intends to achieve, rather than adherence to past practice or a component separate from 
reliability calibration.  In other words, the ensuing design is produced by design values, which is the 
product of partial/resistance factors with characteristic values, not merely characteristic values alone. 
There are practical concerns regarding: (1) estimation of quantiles reliably from limited data and (2) 
quantiles falling below known lower bounds (e.g. residual friction angle) due to inappropriate choice 
of unbounded probability distribution functions.  However, both concerns do not merely affect the 
characteristic value but fundamentally affect the reliability analyses underlying code calibration as 
well. 

 
Reply by Yu Wang (City University of Hong Kong, Hong Kong) 
 
Thank you very much for adding very informative and valuable insights to this discussion. Although 
the definition of ground property characteristic values is clearly given in the Eurocodes (both the head 
code and EC7), it seems that there are some practical difficulty in implementing this definition in 
geotechnical practice, due to, for example, site-specific nature of ground properties, generally small 
sample size of site-specific data, usage of engineering experience and judgment (e.g., previous data 
from similar project or site conditions). In addition, the characteristic values in EC7 are linked with 
the output of a design calculation, i.e., “a question in mechanics” as pointed out in the discussion 
above. This indeed is a dilemma of “Which came first: the chicken or the egg?” because the 
characteristic values are supposed to be defined first for the subsequent design calculation.  

A possible way out of this dilemma is to revise the definition of characteristic values in such a 
way that it does not involve the design calculation (or the “mechanics” of a design) when selecting the 
characteristic values. In other words, the characteristic value may be defined to reflect only the 
existing information on the site, including site-specific test data and pre-existing engineering 
experience and judgment as shown in this report.  

The advantage of such a definition is that it allows different practitioners to arrive at the same 
characteristic value from a given (i.e., the same) set of site-specific test data and pre-existing 
engineering experience and judgment, even for different design problems (e.g., foundations, slope 
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stability). Then, based on different design problems, different influence zones are identified, and the 
characteristic values within the corresponding influence zones are used in the design calculations. For 
example, the influence zone for a shallow foundation is about one diameter of the foundation width 
below the foundation, and that for the side resistance of a pile is the length of the pile. This is 
consistent with the conventional (or deterministic) practice in geotechnical engineering.  

The disadvantages of such a definition is that many sophisticated and important issues raised in 
the discussion above will NOT be considered in the definition of characteristic value, such as the 
“mobilized” random variable for different design problems (e.g., foundations, slope stability) and 
spatial averaging along a fixed surface vs an unknown surface. All these important issues involve the 
“mechanics” of the design problem under consideration, and they should be properly considered by 
other means in design codes, such as partial factors. Calibration of the partial factors always involves 
the “mechanics” of the design problem under consideration, and it is problem specific. It might be 
logical and convenient to remove all the “mechanics” related issues from the definition of 
characteristic values and incorporate them systematically during the calibration of partial factors.  

It is also worth noting that, as pointed out in the discussion above, “The concept of a 
“characteristic value” is intrinsically linked to semi-probabilistic formats, particularly the partial 
factor approach.” If using a single characteristic value in semi-probabilistic formats is NOT able to 
properly reflect the “mechanics” of the design problem under consideration (e.g., the occurrence of 
different failure modes for different characteristic values adopted), direct probability-based design 
methods may be used for these sophisticated design problems. Detailed discussion on the direct 
probability-based design methods in geotechnical engineering is given by Wang et al. (2016). 

 
Reference: 
Wang, Y., Schweckendiek, T., Gong, W., Zhao, T., and Phoon, K. K. (2016). Direct probability-based 
design methods, Chapter 7 in Reliability of Geotechnical Structures In ISO2394, Edited by K. K. 
Phoon, J. V. Retief, Pages 193–226, DOI: 10.1201/9781315364179-8.  

 
Following-up discussion by Jianye Ching (National Taiwan University, Taiwan) 
 
I think we all agree that mechanics must enter into the design process. The question is where. 
Mechanics can enter through the characteristic value - this is the current EC7. In your reply, you 
propose that mechanics can enter only through the partial factors. The characteristics value can be 
mechanics free. You mentioned the chicken-egg dilemma, which is quite an interesting point. 

My view is the following: 
1. The chicken-egg dilemma is indeed inconvenient because the engineer needs to think about 

the mechanics during the planning of site investigation and the determination of characteristics value. 
However, I think this is not really a dilemma but a healthy thought process. It forces design engineers 
to think about the mechanics when he/she plans for site investigation and interprets the characteristics 
value. Without this thought process for mechanics, there seems to be no general guideline for planning 
site investigation and choosing characteristics value. 

For instance, suppose we ask an engineer to plan for site investigation without telling him/her the 
type of construction (a foundation or an excavation). Without the mechanics in mind, he/she may 
decide to investigate up to 20 m deep, but what if the real construction is a 50 m deep drilled shaft. 

You mentioned the concept of influence zone that is mechanics free. For instance, suppose we 
tell the design engineer that the influence zone is 20 m deep without telling him/her the type of 
construction. Without the mechanics in mind, he/she may decide to take the average value over the 
entire 20 m as the characteristics value. This makes sense for the shaft resistance of a pile, but what if 
the real construction is a 20 m mat foundation with critical slip surface passing through a weak zone. 

My view is that the chicken-egg process is a healthy thought process with at least two advantages: 
(a) it forces engineers to think about the mechanics and (b) it prevents engineers from producing 
irrelevant site investigation plans. 

2. It is true that the calibration of partial factors involves mechanics, e.g., partial factors can be 
calibrated by FORM, and FORM requires the definition of the limit-state function, and mechanics is 
in the limit-state function. However, this does not imply that the issue of irrelevant site investigation 
planning in #1 can be resolved by careful partial factor calibration. In fact, if the site investigation 
planning is irrelevant, the design will be irrelevant as well even if the partial factors are calibrated by 
a procedure that considers mechanics. 
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In my opinion, partial factor calibration considers "mechanics" for a different purpose. The 
limit-state function is needed so that the sensitivity of various uncertainty will be correctly quantified 
and reflected. For instance, for a limit-state function more sensitive to friction angle than to unit 
weight, a more conservative partial factor should be calibrated for friction angle. However, doing this 
sensitivity correctly does not mean we no longer need a relevant site investigation plan. 

 
Reply by Yu Wang (City University of Hong Kong, Hong Kong) 
Thank you for following up this discussion. The comments and discussions are very much appreciated. 
Planning of site investigation is an important issue, but this discussion group (or Chapter 5) focuses 
on how to use Bayesian statistics and prior knowledge to facilitate selection of characteristic values, 
for a given definition of characteristic value and a given set of reasonable site investigation data. 
Without reasonable data and/or prior knowledge (e.g., engineering judgment and experience), it is 
impossible to properly select characteristic values for ground properties. Different influence zones for 
different geotechnical structures are one kind of prior knowledge that is commonly used in 
engineering practice, including planning of site investigation. 

It is a tough decision for code developers to strike the balance among different competing, or 
even contradicting, issues, such as the ideal design process (including site investigation) that can be 
specified in the codes and the practicality when the design codes are implemented by practicing 
engineers with diverse background in engineering practice. What I mentioned in the reply above is 
just an idea for code developers to consider.  

I personally believe that the definition of characteristic values and the calibration of partial 
factors must be compatible with each other, because they act together to achieve the target 
performance that the design codes aim to achieve. For example, if the spatial variability is considered 
in the definition of characteristic value, it might be tricky to consider the spatial variability again in 
the calibration of partial factors.  

 
Discussion by Brian Simpson (Arup, UK) 
I found this report very interesting.  I do think that Bayesian methods could be very helpful in 
deriving characteristic values of parameters.  Thanks to Yu Wang. 

I have a concern, however, about the definition of characteristic value, as understood in EC7. In 
the report, it seems to be treated as a 5% fractile of test results, which is not the intention of EC7.  
The author might want to comment further on this. 

The basic definition given in EC7 is that the characteristic value is a “a cautious estimate of the 
value affecting the occurrence of the limit state” (2.4.5.2(2)).  The paragraphs that follow this are 
important, including (7): 

The zone of ground governing the behaviour of a geotechnical structure at a limit state is usually 
much larger than a test sample or the zone of ground affected in an in situ test. Consequently the value 
of the governing parameter is often the mean of a range of values covering a large surface or volume 
of the ground. The characteristic value should be a cautious estimate of this mean value. 

And (9): 
When selecting the zone of ground governing the behaviour of a geotechnical structure at a limit 

state, it should be considered that this limit state may depend on the behaviour of the supported 
structure. For instance, when considering a bearing resistance ultimate limit state for a building 
resting on several footings, the governing parameter should be the mean strength over each individual 
zone of ground under a footing, if the building is unable to resist a local failure. If, however, the 
building is stiff and strong enough, the governing parameter should be the mean of these mean values 
over the entire zone or part of the zone of ground under the building. 

Paragraph (11) says: 
If statistical methods are used, the characteristic value should be derived such that the calculated 

probability of a worse value governing the occurrence of the limit state under consideration is not 
greater than 5%. 

And the note attached to that is important: 
In this respect, a cautious estimate of the mean value is a selection of the mean value of the 

limited set of geotechnical parameter values, with a confidence level of 95%; where local failure is 
concerned, a cautious estimate of the low value is a 5% fractile. 

It should be clear from this that the characteristic value required by EC7 is not a 5% fractile of 
test results, but rather there is a 5% probability that a worse value could be representative of the whole 
body or surface of soil that governs the occurrence of the limit state. 



Joint	TC205/TC304	Working	Group	on	“Discussion	of	statistical/reliability	methods	for	Eurocodes”	 	
–	Final	Report	(Sep	2017) 

119 
 

Schneider (1997) suggested that given at least 10 test results, the 5% probability value for the 
mean of the population lies about half a standard deviation from the mean of the test results. His ideas 
have been developed further since then. The following figure, taken from Simpson et al (2009) shows 
that this is much nearer the mean than the 5% fractile of the test results (obviously). The following 
paragraph, taken from the same paper, suggests that this may not be very different from North 
American practice: 

A similar proposal was made by Dahlberg and Ronold (1993) for design of offshore foundations 
and recommended by Becker (1996) for more general use. This involves the use of a “conservatively 
assessed mean” (CAM) as the characteristic value, also about 0.5 standard deviations from the mean 
of the test results. These authors state that for a normal distribution 75% of the measured values 
would be expected to exceed this value. (More accurately, this requires an offset of 0.69 standard 
deviations from the mean, for a normal distribution, as shown in Figure 2.2). Foye et al (2006b) take 
up the same idea proposing to use a CAM with 80% exceedance, equivalent to 0.84 standard 
deviations below the mean of the test results for a normal distribution. These proposals are made in 
the development of North American practice, though at present the AASHTO Specifications do not 
use the term “characteristic” but refer less specifically to nominal values related to “permissible 
stresses, deformations, or specified strength of materials”.  
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Reply by Yu Wang (City University of Hong Kong, Hong Kong) 
Thank you very much for the positive comment. This draft final report adds a section (i.e., Section 5.2) 
on the definition of characteristic value to clarify the comments raised in the discussion. However, the 
definition of characteristic value for ground properties itself might be an intriguing issue, and detailed 
discussion on this issue is beyond the scope of this report, which focus on using Bayesian statistics 
and prior knowledge to facilitate the proper selection of characteristic value for a given definition of 
characteristic value. Detailed discussion on definition of characteristic value in EC7 is referred to 
Schneider and Schneider (2013) and Orr (2017). The illustrative examples in this report have also 
been revised to highlight that, when the characteristic value is defined in different way, different 
numerical values will be obtained accordingly. 
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Chapter 6 Bayesian Method: A Natural Tool for Processing Geotechnical 
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6.1 INTRODUCTION 
 

In geotechnical analysis and prediction, it is a common practice for engineers to consider information 
from multiple sources. The combination of information is often made based on engineering judgement 
and experience. From a mathematical perspective, the Bayesian method is a formal and scientific tool 
to combine information from multiple sources for the purpose of updating prior knowledge given new 
information. The potential application of Bayesian methods in geotechnical engineering has been 
explored by many researchers. In practice, however, the application of Bayesian methods is still quite 
limited. The objective of this report is to illustrate the benefits of using Bayesian methods for 
processing geotechnical information. The structure of this report is as follows. First, the need for 
information combination in geotechnical engineering is analyzed, followed by a brief review of the 
theory and computational techniques for Bayesian analysis. Then, several examples are presented to 
show how the Bayesian method can be used to tackle different geotechnical problems. Finally, the 
potential application of the Bayesian method in the Eurocode is explored, and the challenges for 
application of the Bayesian method in geotechnical engineering are discussed. We hope that this 
report can provide a useful guide for practicing engineers to identify the merits of solving 
geotechnical problems from a Bayesian perspective, and thus encourage them to take advantage of the 
Bayesian method in practice. The computational details are not the emphasis of this report. 

 

6.2 NEED FOR INFORMATION COMBINATION IN GEOTECHNICAL 

ENGINEERING 
 

The practice of geotechnical engineering is always amenable to various uncertainties resulting from 
insufficient site investigation data, time and budget constraint, local experience, expected natural 
hazards, unpredictable environmental and social impact, construction disturbance, imperfect design 
models, etc. From the design perspective, uncertainties can be categorized into parameter uncertainty 
and model uncertainty. Each source of uncertainty can potentially result in unsatisfactory geotechnical 
performance with associated casualty and economic loss, so it is necessary to explicitly evaluate and 
quantify parameter uncertainty and model uncertainty in the context of geotechnical reliability-based 
design, including the commonly-known load and resistance factor design. 

Given an established design method in a design code, a realistic challenge for practicing 
geotechnical engineers lies in how to determine design values for soil parameters. This challenge is 
caused by several factors including the uncertain depositional process and soil history and the limited 
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number of boreholes that the clients afford to characterize the soil profile and determine the design 
soil parameter values. To this end, either factor-of-safety-based design using conservatively estimated 
parameters or probabilistic analysis can be used. In either of the two approaches, the estimated design 
soil parameters are based on the limited and existing information gained through the initial geological 
survey, in-situ borehole drilling and laboratory testing, and local experience. Existing knowledge 
could lead to prior information that may not represent the actual soil conditions and there is a need to 
update the soil parameters using new information, such as the field observed responses (Peck 1969). 

Variability in soil properties stems from various sources of uncertainty that can be grouped into 
two categories: aleatory uncertainty and epistemic uncertainty. The word aleatory is evolved from the 
Latin alea, which means the rolling of dice, and the aleatoric uncertainty refers to the intrinsic 
randomness of a phenomenon. In geotechnical engineering, the aleatory uncertainty includes spatial 
variability and random testing errors. The word epistemic is evolved from the Greek episteme (i.e., 
knowledge). The epistemic uncertainty is caused by lack of knowledge or data. In geotechnical 
engineering, the epistemic uncertainty is often related to measurement procedures and limited data 
availability (Whitman 1996). 

Both aleatory uncertainty and epistemic uncertainty can be addressed using combined prior 
information and newly observed information in geotechnical engineering. For example, the aleatoric 
uncertainty that is reflected in a random field of a spatially varying soil parameter can be calibrated 
given sufficient field load tests. Given more data from case histories, the knowledge on soil 
parameters, the epistemic uncertainty, can be back-calculated as posterior information. As more 
observational data are introduced, the uncertainties can be reduced through updating the mean values 
and decreasing the variance of each parameter, which can benefit the subsequent stages of design and 
construction. Admittedly, the amount of data required depends on the number of uncertain variables. 
There is always a trade-off between the site investigation effort and the improved knowledge on 
design soil parameters. It is noted that the site investigation cost can be optimized using approaches 
such as the Bayesian method. Depending on the specific problem, the parameter uncertainty, or model 
uncertainty or both can be updated through back analysis. 

 

6.3 BAYESIAN METHOD: CONCEPT AND COMPUTATIONAL TECHNIQUES 
 

The uncertainties in the geotechnical design can be formally modelled through random variables. 
Those random variables are represented with probability distributions that quantify the knowledge in 
the model parameters and the model itself. The Bayesian approach provides a rigorous framework to 
reduce the uncertainties associated with the random variables when more information is available. Let 
vector θ denote uncertain variables to be updated with the observation data D. The Bayesian method 
can be applied to both continuous variables and discrete random variables. As an example, suppose 
the elements of θ are all continuous variables, and the prior knowledge about θ can be denoted by a 
probability density function (PDF), f(θ). Let’s denote L(θ|D) as a likelihood function, indicating the 
chance to observe D given θ. One may refer to Juang et al. (2015) on how to construct the likelihood 
function using various types of geotechnical data. Based on Bayes’ theorem, the prior knowledge 
about θ and the knowledge learned from the observed data can be combined as follows: 
 

L( | )f ( )
f ( | )

... L( | )f ( )d

  

θ D θ
θ D

θ D θ θ
 (6-1) 

 
where f(θ|D) = posterior PDF of θ representing the combined knowledge. In Eq. (6-1), both the 
likelihood function L(θ|D) and prior PDF f(θ) affect f(θ|D), and the role of the likelihood function will 
become more dominant as the amount of observed information increases. 

Based on the law of total variance, it can be shown that the following inequality holds (Gelman 
et al. 2013): 

    Var E Var | θθ θ d  (6-2) 

where Var(θ) denotes the prior variance of θ, Eθ(Var(θ|D)) denotes the expected value of the posterior 
variance of θ. Eq. (6-2) indicates that the posterior variance is on average smaller than the prior 
variance, by an amount that depends on the variation in the posterior means over the distribution of 
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the possible data (Gelman et al. 2013). This inequality implies that if one consistently uses the 
Bayesian method, uncertainty reduction can be eventually achieved in the long run. However, there is 
no guarantee that the Bayesian method can always achieve uncertainty reduction in each individual 
application. The uncertainty in the posterior distribution may be larger than that in the prior 
distribution if the observed data significantly contradicts with the prior knowledge. 

The posterior distribution f(θ|D) in Eq. (6-1) is generally difficult to evaluate except for some 
special cases, such as the case where conjugate priors can be employed. In recent years, along with 
the advances in computational statistics, many methods have become practical for calculating f(θ|D). 
Several commonly used computational methods will be described below. 
 

6.3.1 Conjugate prior 
 
If the posterior PDF f(θ|D) is in the same family as the prior PDF f(θ), the prior and posterior are then 
called conjugate distributions. When the conjugate prior is adopted, the posterior distribution can be 
obtained analytically, and thus greatly simplifying the computational work involved. A comprehensive 
summary of conjugate priors can be found in the literature such as Ang and Tang (2007), Gelman et al. 
(2013), and Givens and Hoetings (2013). 
 

6.3.2 Direct integration method 
 
Based on the definition of the mean and the covariance matrix, the posterior statistics of θ can be 
evaluated using the following equations: 

 i|D i i iμ = θ f θ |D dθ  (6-3) 

   22
i|D i i|D i iσ = θ -μ f θ |D dθ  (6-4) 

where f(θi|D) = posterior PDF of the ith element of θ, θi|D = posterior mean of θi, and θi|D = posterior 
standard deviation of θi, respectively. 

In principle, all existing methods such as Gaussian quadrature (e.g., Christian & Baecher 1999) 
for integration can be used to evaluate the above integrals. However, the computational work involved 
with the direction integration method may increase significantly with the dimension of θ. Thus, the 
direct integration method is often used for low dimensional problems. 
 

6.3.3 Markov Chain Monte Carlo (MCMC) simulation 
 
Albeit the apparent simplicity of Eq. (6-1), obtaining meaningful statistical information might require 
high dimensional integration which could be computationally challenging. A common approach to 
evaluate the posterior distribution is to use sampling methods such as Markov Chains Monte Carlo 
(MCMC) simulation (Brooks et al. 2011, Liu 2004, Robert and Casella 2004). The basic idea of 
MCMC simulation is to draw samples from a target distribution iteratively by means of a Markov 
chain that converges to the target distribution. When the Markov chain reaches its equilibrium state, 
the samples from the Markov chain are also those of the target distribution. These samples can then be 
used to infer the properties of the target distribution, and for subsequent geotechnical reliability 
analysis. In recent years, MCMC simulation is increasingly used in geotechnical engineering. 
 

6.3.4 System identification (SI) method 
 
In many cases, the parameters of a geotechnical model can hardly be determined accurately. The 
system identification (SI) method (e.g., Tarantola 2005), through embedding a deterministic model 
into the Bayesian formulation, is specifically developed for updating the parameters of a mechanical 
model based on the observed performance data. Let g(θ) be a geotechnical model with θ denoting 
uncertain input parameters in this model. Let D denote the observed performance data. Assume the 
prior knowledge about θ can be denoted by a multivariate normal distribution with a mean of μθ and a 
covariance matrix of Cθ. Assume that the observational uncertainty can be described by a multivariate 
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normal distribution with a mean vector of zero and a covariance matrix of CD. Assume further that the 
model uncertainty can be described by a multivariate normal distribution with a mean vector of zero 
and a covariance matrix of Cm. With the above assumptions, θ* can be found by maximizing the 
posterior PDF, or equivalently, minimizing the following misfit function (Tarantola 2005) 

       12 ( ) ( ) ( )
T T

TS g g     -1
θ θ θθ θ D C θ D θ μ C θ μ  (6-5) 

where CT = CD + Cm.  
Let θ* be the point where the misfit function is minimized. In the SI method, f(θ|D) is 

approximated by a multivariate normal distribution with a mean of μθ|D and a covariance matrix of 
Cθ|D, where μθ|D and Cθ|D are defined as (Tarantola 2005): 

 *
θ|Dμ θ  (6-6) 

  1

T


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
θ

G
θ
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In Eq. (6-5), the effect of modeling uncertainty and observational uncertainty on the posterior 
distribution are represented by Cθ and Cm, and their overall effects are jointly represented by CT. If 
the model uncertainty is significantly larger than the observational uncertainty, CT will be dominated 
by Cm, and in such a case the posterior distribution will be more affected by the model uncertainty. 
Similarly, if the observational uncertainty is significantly larger than the model uncertainty, the 
posterior distribution will be more affected by the observational uncertainty. On the other hand, the 
posterior distribution will be more affected by the prior distribution when the model and observational 
uncertainties increase. One can refer to Tarantola (2005) for a detailed discussion on the interplay 
between modeling, observational uncertainty, and prior information as well as their effect on the 
posterior distribution. 
 

6.3.5 Other methods 
 
In geotechnical engineering, several other techniques are also used for evaluating the posterior PDF, 
such as the extended Bayesian method (e.g., Honjo et al. 1994), the first order second moment 
Bayesian method (Gilbert 1999), and the importance sampling or the Latin Hypercube Sampling 
(Choi et al. 2006). Bayesian computational statistics is a field that is experiencing rapid progress. The 
interested readers may refer to the literature such as Gelman et al. (2013) for greater details about 
recent computational techniques for estimating posterior distributions. The Stochastic Finite Element 
Method (SFEM) includes a set of techniques which enable the propagation of parameter uncertainty 
through a deterministic Finite Element Method (FEM) (Ghanem & Spanos, 1991, Le Maître & Knio, 
2010, Sudret 2008). As the SFEM and the Bayesian approach regard the model parameters as random 
variables, both can be used seamlessly. There has been some development in this direction (El 
Moselhy & Marzouk, 2012 and Cañavate et al. 2015). 

In geotechnical engineering, Straub and Papaioannou (2015) illustrated how to perform Bayesian 
analysis for learning and updating geotechnical parameters and models with measurements. Juang and 
Zhang (2017) provided a tutorial on how the Bayesian methods can be formulated and used to solve 
different types of geotechnical problems. An in-depth discussion on how the Bayesian methods can be 
applied in different geotechnical problems can be found in Baecher (2017). 

 

6.4 EXAMPLES 
 

6.4.1. Back-analysis of soil properties from failed slopes 
 
Slope stability problems are generally associated with uncertainties in the estimation of pore pressure 
regimes, soil/rock properties, and geometry of the failure surface. For failed slopes, Bayesian 
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probabilistic approaches allow for utilizing information on the location and geometry of the observed 
failure surface to update prior probability distributions of the shear strength parameters (ϕ’ and c’) and 
the pore pressure regime (ru). The major strength of probabilistic back-analysis techniques for slopes 
is the recognition that there are numerous combinations of parameters that could result in the slope 
failure and the ability to quantify the relative likelihoods of these combinations. Zhang et al. (2010) 
presented an approach that uses a minimization procedure of a misfit function to refine/update the 
distributions of ϕ’, c’, and ru. The main assumption is that all the parameters are normally distributed. 

The example targets a case history involving the stability of a proposed highway in Algeria 
(Hasan and Najjar 2013), as shown in Figure 6-1. The prior mean values of ϕ’ and c’ were estimated 
as 21o and 15 kPa, respectively. By combining uncertainties due to spatial variability and statistical 
uncertainties, coefficients of variation (COVs) of 0.31 and 0.55 were determined for ϕ’ and c’, 
respectively. The assumed prior pore water pressure regime was modelled with a mean ru of 0.33 and 
an associated COV of 0.50. The high COV of 0.50 reflects the lack of site-specific piezometers. 

Results of the updating process assuming statistically independent parameters indicate reductions 
in the updated mean ϕ’ (from 21 to 17.3 degrees) and c’ (from 15 to 12.1 kPa) and an increase in the 
mean ru (from 0.33 to 0.42). These results are expected since the assumed prior mean values 
corresponded to a safety factor of ~ 1.5. Reductions in ϕ’ and c’ along with an increase in ru were 
required for failure conditions to prevail. Results also indicate that the standard deviations decreased 
for the updated case (5.5%, 27%, and 21.2% reductions in the standard deviations of c’, ϕ’ and ru). 
Finally, results indicated that although the prior parameters were assumed to be statistically 
independent, the updated parameters were found to be correlated with the following correlation 
coefficients: ρc,ϕ =-0.32, ρϕ,ru=0.78, and ρc, ru = 0.29. 

 

 
Figure 6-1 Plan and Section View for highway alignment and failure zone (Hasan and Najjar 2013). 

 
To investigate the sensitivity of the results to the correlation between c’ and ϕ’, the back analysis 

was repeated for ρc,ϕ values of -0.25, -0.5, -0.75, and -0.95. Results indicate that the assumption of 
negative correlation between c’ and ϕ’ results in an appreciable increase in the updated mean values of 
c’, ϕ’, and ru with the effect being stronger as the correlation is assumed to be stronger (see Hasan and 
Najjar 2013). On the other hand, the updated standard deviations were found to be less sensitive to the 
assumed correlation coefficient. 

Since uncertainties exist in the failure surface, it is important to determine whether that affects 
the results of the updating process. Results where the failure plane is varied indicate that the updated 
mean values of c’ and ϕ’ are sensitive to the assumed failure surface, indicating that accurate mapping 
of the failure surface is required for an accurate estimation of the soil properties. 

 

6.4.2. Shallow foundation reliability based on spatially variable soil data  
 

This example demonstrates the potential and benefits of using Bayesian analysis for incorporating 
information from spatially distributed data on soil into a reliability analysis. It is taken from 
(Papaioannou and Straub 2017). Exemplarily, the reliability of a centrically loaded rigid strip footing 
embedded in silty soil is evaluated. The bearing capacity of the foundation depends on the friction 
angle of the silty soil, which is a spatially variable property. To identify the friction angle, direct shear 
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tests of soil probes, taken at different depths in the area of the foundation are performed. The 
measurement outcomes are used to learn the spatial distribution of the soil property through 
application of Bayesian statistical analysis. 

In reliability assessment, spatially variable properties are typically modeled by random variables 
with reduced variance to account for the spatial averaging effect. In this example, it is demonstrated 
that such an approach can be extended to a case in which spatial data are used to learn the distribution 
of spatially variable properties within a Bayesian context. This simplified random variable model is 
compared to a random field model that explicitly represents the spatial variability of the soil property, 
and provides the most accurate solution at the highest modeling and computational cost. One 
important detail: in the random variable model, the data are used to learn the statistics of the soil 
property and cannot be used to learn its posterior auto-covariance function. Therefore, spatial 
averaging is performed with the prior auto-correlation function. 

Figure 6-2 illustrates the influence of the prior scale of fluctuation of the random field on the 
prior and posterior reliability estimates obtained with the RV (random variable) approach with spatial 
averaging and the RF (random field) approach. In the left panel of Figure 6-2, one can observe that 
the prior reliability estimates calculated with the two approaches agree well. However this is not the 
case for the posterior reliability estimates shown in the right panel of Figure 6-2. In the RF approach, 
the reliability increases fast when the scale of fluctuation becomes large. This is because the area of 
influence of the measurements increases as the prior spatial correlation increases. At low scales of 
fluctuation, the posterior statistics become almost uniform along the depth of the failure surface and 
the reliability increases again due to spatial averaging according to the prior correlation structure. The 
results obtained with the RV approach assume that the posterior correlation is the same as the prior 
independent of the prior scale of fluctuation. At low scales of fluctuation, this assumption is valid and 
the reliability estimates are close to the ones obtained with the RF approach. However, with 
increasing scale of fluctuation, the assumption that the spatial variability of the posterior is not 
influenced by the measurements is unrealistic and the reliability is significantly underestimated. 

 

 
 

Figure 6-2 Prior and posterior reliability index vs. scale of fluctuation for the two modelling 
approaches: The random variable (RV) approach and random field (RF) approach. 

 

6.4.3. Updating pile capacity at a site with load test results 
 
In the last three decades, efforts have targeted analyzing the impact of pile load tests on the design of 
foundations in the framework of a reliability analysis. Examples include the work of Baecher and 
Rackwitz (1982), Zhang and Tang (2002), Zhang (2004), Najjar and Gilbert (2009), Kwak et al. 
(2010), Park et al. (2011, 2012), Zhang et al. (2014), Abdallah et al. (2015a, b), and Huang et al. 
(2016). In these studies, results of pile load tests are used to update the mean, median, lower bound, or 
actual capacity distributions of piles using Bayesian techniques. In this section, an example is 
presented to illustrate how the updating process is implemented. In the example, the uncertainty in the 
pile capacity is modeled by a lognormal distribution with (1) a coefficient of variation δr that 
represents the uncertainty due to spatial variability in pile capacity in a given site and (2) an uncertain 
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mean capacity that incorporates the model uncertainty of the pile capacity prediction method. 
The mean of the pile capacity (rmean) at a given site is generally a random variable. The mean and 

COV of rmean are typically estimated from databases of pile load tests from the ratio of measured to 
predicted capacities, λ. As an example, Zhang (2004) reports COV values ranging from 0.21 to 0.57 
for about 14 methods of pile capacity prediction. The COV of the pile capacity δr reflects the 
uncertainty due to within-site spatial variability (0.1 to 0.2) and is generally not updated in the 
analysis. In this example, the mean and COV of λ are assumed to be 1.30 and 0.50, respectively and δr 
is assumed to be equal to 0.2. Zhang (2004) presents the Bayesian formulation that allows for 
updating the pile capacity distribution for cases involving (1) pile load tests that are conducted to 
failure, and (2) proof load tests. The main difference is the form of the likelihood function.  

For cases where piles carry the proof load, the mean value of the updated pile capacity increases 
with the number of tests while the COV value decreases. This is expected to result in increases in the 
reliability of the updated pile design at the site. For cases where some of the tested piles fail at 
carrying the proof load, the updated mean of the pile capacity decreases significantly as the number of 
positive tests decreases. For such cases the updated reliability could be lower than the prior. 

Figure 6-3 shows the reliability index β for single piles designed with a factor of safety (FOS) of 
2.0 and verified by several proof tests. The β value for the prior case is 1.49. If one positive proof test 
is conducted, then β will be updated to 2.23. The updated β will continue to increase if more positive 
proof tests are conducted. In the cases when not all tests are positive, the reliability of the piles will 
decrease with the number of tests that are not positive. The shaded zone in Figure 6-3 indicates that 
target reliability levels could be achieved with 1 to 3 positive tests with proof levels of twice the 
design load, provided that the piles act as part of a system. For a structure supported by four or fewer 
piles where the system effect may not be dependable, the target reliability should be slightly larger (ex. 
β=3.0) than those presented in Figure 6-3. Zhang (2004) shows that one or two successful proof load 
tests that are conducted at three times the design load are required to achieve a target reliability index 
of 3.0, as necessitated by non-redundant piles. Based on the above-mentioned methodology, a rational 
decision making framework (Najjar et al. 2016, 2017) could be envisaged to facilitate the choice of a 
load test program that has the maximum expected benefit to the project. 

 

 
Figure 6-3 Variation of the reliability index with proof load test results (Zhang 2004). 

 

6.4.4. Back-Analysis to determine the undrained strength of liquefied soil 
 

Lateral spreading is the finite, lateral movement of gently to steeply sloping, saturated soil deposits 
caused by earthquake-induced liquefaction (Kramer 2016). A key parameter controlling the extent of 
lateral movements is the undrained strength of the liquefied ground. In this example we present a case 
history where a well-documented lateral spread that occurred during the M8.0 Pisco Earthquake is 
used along with Bayesian updating to estimate the undrained strength of the liquefied ground. The 
lateral spread occurred near the community of Canchamaná, on a marine terrace where pervasive 
liquefaction was observed (GEER 2007). Post-earthquake investigations as well as a comparison of 
pre- and post-earthquake satellite images were used to obtain a detailed displacement field over the 
entire 3km by 1 km where the lateral spread was observed (Cox et al. 2010). In addition, a 
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comprehensive field characterization study that included a series of Standard Penetration Tests (SPT) 
that covered the complete extent of the marine terrace was completed about 2.5 years after the 
earthquake. Details of this case history are presented in Gangrade et al. (2015). 

The displacement field across the Canchamaná area was non-uniform, with displacements 
concentrated along certain cross sections. On the other hand, the SPT measurements had a more or 
less uniform distribution throughout the terrace. This is compatible with the distribution of 
liquefaction features over the area. Slope stability analysis indicated that the difference in 
displacements were likely due to differences in surface topography, which in turn imposed different 
driving forces on the liquefied soil. A key parameter in the stability analyses was the undrained 
strength of the liquefied soil. Current methodologies, such as Olson and Stark (2002), correlate this 
strength to corrected SPT N values: 

 

u
1,60'

v

s
=mN +c

σ
 (6-9) 

 
where c and m are fitting parameters. The relationship applies for SPT≤12; a different slope is applied 
for SPT>12 (Davies and Campanella 1994). 

For the purpose of this study, we assume that m is given and we let c be a random variable. The 
objective of the Bayesian updating analysis is to determine the value of c in Equation (6-9) that is 
compatible with the observations of failure/no-failure at four cross-sections in the Canchamaná 
complex. We select a uniform prior for c within the bounds given by Olson and Stark (2002). The 
posterior distribution for c, given that some bins have failed and some have not failed, is given by: 

 

 i j
i j

i j

P(F |c)P(F |c)
f(c|FF )= f c

P(FF )
 (6-10) 

 
where f(c) is the prior distribution, Fi denotes failure of bin i, and F j denotes no-failure in bin j. The 
conditional failure probabilities are computed from pseudo-static slope stability analyses assuming a 
lognormal distribution for the input PGA. Posterior distributions for c were obtained for pair-wise 
combinations of a failed and no-failed bin. Modal values of c from these distributions are plotted in 
Figure 6-4 for different values of median and standard deviation of the PGA. Recorded values of PGA 
at nearby stations, as well as estimated intra-event standard deviation (σlnPGA) from existing ground 
motion prediction equations can be used to obtain best-estimate values of the parameter c. In this 
example, the use of Bayesian updating allowed for a formal way of incorporating previous knowledge 
(e.g., the Olson and Stark model) with observations to improve the predictive ability of the model. 
The analyses could be improved through more rigorous determination of the prior distributions and a 
more formal inclusion of model uncertainties. 
 

 
Figure 6-4 Correlation between ‘c’ values and the estimated mean PGA (μlnPGA). 



Joint	TC205/TC304	Working	Group	on	“Discussion	of	statistical/reliability	methods	for	Eurocodes”	 	
–	Final	Report	(Sep	2017) 

128 
 

6.4.5. Identification of underground soil stratification 
 

Identification of underground soil stratification is an important aspect in geotechnical site 
characterization, even within a single type of soil. Consider, for example, London Clay Formation 
(LCF). It is well recognized that the LCF contains five depositional cycles (i.e. lithological units) and 
each cycle records an initial marine transgression followed by gradual shallowing of the sea. Because 
geotechnical properties (e.g. strength, stiffness and consolidation characteristics) of London Clay vary 
significantly in different lithological units or soil strata, it is of practical significance to identify the 
soil strata in London Clay so that the geotechnical property data within the same soil strata can be 
compared or used effectively. 

Bayesian model class selection (BMCS) method has been developed to properly identify 
underground soil strata (Wang et al. 2014&2016b). In BMCS, a model class is referred to a family of 
stratification models that share the same number of soil strata but have different model parameters 
(Cao and Wang 2013, Wang et al. 2013). The number of soil strata is considered as a variable k, which 
is a positive integer varying from 1 to a maximum possible number NLmax. Therefore, there are NLmax 
candidate model classes Mk, k=1, 2, … , NLmax, and the k-th model class Mk has k soil strata. For a 
given set of site-specific observation data XM, the plausibility of each model class is quantified by 
conditional probability P(Mk|XM), k = 1, 2, … , NLmax. Then, the most probable model class Mk

* is 
determined by comparing the conditional probabilities P(Mk|XM) of all NLmax candidate model classes 
and selecting the one with the maximum value of(Mk|XM). The number of soil strata corresponding to 
Mk

* is taken as the most probable number k* of soil strata. 
 

 

Figure 6-5 Identification of soil strata in London Clay (Wang et al. 2014). 
 
As shown in Figure 6-5, BMCS method successfully identifies different lithological units of LCF 

using water content data (Wang et al. 2014). In addition, BMCS method can also be used together 
with CPT data to classify soil behavior types (SBT) and identify soil layers (Wang et al. 2013) or to 
identify statistically homogeneous soil layers and their associated spatial variability parameters in 
each statistically homogeneous soil layer (Cao and Wang 2013). 

 

6.4.6 Other applications 
 

Embankments. In one of the earliest applications of Bayesian analysis to geotechnical problems, 
Honjo et al. (1994) present the case study of an embankment on soft clay to illustrate the effectiveness 
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of what they call a “new type of indirect inverse analysis procedure”, which they call extended 
Bayesian method, EBM. The proposed method is based on a Bayesian model proposed by Akaike 
(1978) and combines objective information and subjective information. Calle et al. (2005) apply a 
Bayesian updating concept to develop a method to predict expected mean values and standard 
deviations of embankment settlement, as function of time. The method is based on both prior 
assumptions regarding expected means and standard deviations of settlement parameters and 
computation model uncertainty, as well as actually observed settlement behavior, e.g. during the 
construction stage. In Wu et al. (2007), the Bayesian method is used to update the material properties 
used in the prediction for a test embankment, and the updated properties are then used to update the 
prediction for the test embankment and to predict the performance of the full-scale embankment. 
Schweckendiek &Vrouwenvelder (2013) demonstrate how the Bayesian method can be used to reduce 
uncertainties in piping reliability assessment of an embankment. Huang et al. (2014) presents two 
examples where Bayesian statistical methods can be used for the prediction of future performance. 
The second example is to update embankment settlement predictions when field settlement 
monitoring data are available. More recently, Kelly & Huang (2015) present a proof of concept study 
to assess the potential for Bayesian updating to be combined with the observational method to allow 
timely and accurate decision-making during construction of embankments on soft soils. 

Tunnels. Lee & Kim (1999) adopt EBM for a finite element analysis implemented to predict the 
ground response. In particular, they determine various geotechnical parameters of a FE 
implementation of an actual tunnel site in Pusan, Korea, including the elastic modulus, the initial 
horizontal stress coefficient at rest, the cohesion and the internal friction angle. Cho et al. (2006) 
combine EBM with a 3-dimensional finite element analysis to predict ground motion by using relative 
convergence as observation data. The proposed back-analysis technique is applied and validated by 
using the measured data from two tunnel sites in Korea. Camos et al. (2016) present a Bayesian 
method for updating the predicted tunneling-induced settlements when measurements are available. 
They also show how maximum allowable settlements, which are used as threshold values for 
monitoring of the construction process, can be determined based on reliability-based criteria in 
combination with measurements. The proposed methodology is applied to a group of masonry 
buildings affected by the construction of a metro line tunnel in Barcelona, Spain. 

Piles. Goh et al. (2005) use a Bayesian neural network algorithm to model the relationship 
between the soil undrained shear strength, the effective overburden stress, and the undrained side 
resistance alpha factor for drilled shafts. The proposed approach provides information on the 
characteristic error of the prediction that arises from the uncertainty associated with interpolating 
noisy data. Kerstens (2006) deals with the prediction of the ultimate limit state (bearing capacity) of a 
single foundation pile. The proposed Bayesian statistical method, which combines information on pile 
capacity with the results of full scale tests, is applied to establish the probability of contending PDF's 
of the model uncertainty. Huang et al. (2014) present two examples where Bayesian statistical 
methods can be used for the prediction of future performance. 

Deep excavations. The back analysis or inverse analysis of the field instrumentation data is a 
common technique to ascertain the design parameter validity in deep excavation projects. In Juang et 
al. (2013), a Bayesian framework using field observations for back-analysis and updating of soil 
parameters in a multistage braced excavation is presented. With the updated soil parameters, not only 
is the mean prediction improved, but also the variation of the prediction is reduced. In Wu et al. 
(2014), a novel method for updating the probability distribution of the maximum wall displacement at 
the ith excavation stage based on the measurements at earlier stages is proposed based on the concept 
of Bayesian updating. Canavate-Grimal et al. (2015) propose a Bayesian-type methodology to solve 
inverse problems which relies on the reduction of the numerical cost of the forward simulation 
through stochastic spectral surrogate models. The proposed methodology is validated with three 
calibration examples. 

Soil Liquefaction. The soil liquefaction potential assessment is another field where the Bayesian 
method finds wide applications. Juang et al. (2000) suggest a Bayesian method to calibrate the 
liquefaction probability calculated from a reliability analysis. Cetin et al. (2002) develop a Bayesian 
method to calibrate a liquefaction potential assessment model based on the standard penetration test 
data. The method suggested by Cetin et al. (2002) was later used by Moss et al. (2006) and Boulanger 
& Idriss (2015) to develop liquefaction potential assessment models based on the cone penetration test 
data. Christian & Baecher (2015) discussed the merits of liquefaction potential assessment based on 
the Bayesian method. Juang et al. (2017) provide a comprehensive review on the application of 
probabilistic methods for soil liquefaction assessment. 
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6.5 POSSIBLE/SUGGESTED APPLICATION IN RELATION TO EUROCODES 
 

The Eurocodes consist of ten European Standards that provide common approaches for the design of 
several civil engineering problems. Among the ten standards, the Eurocode 7: Geotechnical design 
(EN 1997) documents how to design geotechnical structures. This code covers a few important 
geotechnical design aspects including the basis of geotechnical design, geotechnical data, spread 
foundations, pile foundations, anchorages, retaining structures, hydraulic failure, overall stability and 
embankments. Eurocode 7 was approved by the European Committee for Standardization (CEN) in 
2006 and has been mandatory in member countries since 2010. Based on the aforementioned review 
of Bayesian approaches, the following suggested applications are recommended in relation to 
Eurocodes: 

(1) Estimation of ultimate resistance of pile foundation based on static load tests. In Clause 
7.6.2.2 of Eurocode 7, it provides guidelines on how to determine the ultimate compressive 
resistance based on results from static load tests. As illustrated in the pile foundation example 
(Zhang 2004), the estimation of the pile capacity can be potentially improved by combining 
information from regional database and the site-specific load test results. This application of 
Bayesian approaches (e.g., Zhang 2004; Najjar and Gilbert 2009) is recommended to 
improve Eurocode 7 for estimation of the ultimate resistance of pile foundations. 

(2) Implementation of observational method. In Clause 2.7 of Eurocode 7, it encourages the 
use of the observational method when prediction of geotechnical behavior is difficult. 
Nevertheless, how to formally implement it is not described in detail. The slope back 
analysis example (Hasan and Najjar 2013) and the liquefaction back analysis example 
(Gangrade et al. 2015) demonstrates how the Bayesian method can be used to reduce 
uncertainty associated with the properties of a geotechnical system based on the observed 
performance with explicit consideration of useful information of other sources. In this regard, 
the Bayesian method is recommended to implement the observational method as described in 
Eurocode 7. For example, the method suggested in Zhang et al. (2010) for back analysis of 
slope failure can be conveniently implemented and easily incorporated into Eurocode 7. 

(3) Estimation of ground properties. In Clause 2.4.3 of Eurocode 7, it provides guidelines on 
how to estimate the properties of soil and rock masses base on test results, either directly or 
through correlation, theory or empiricism, and from other relevant data. As illustrated in the 
shallow foundation example (Papaioannou and Straub 2017) and the soil stratification 
identification example (Wang et al 2014), the Bayesian method can be used to combine 
information from multiple sources for improved estimation of ground properties. 

(4)  Bayesian calibration of partial factors for consistent reliability level. Eurocode 7 adopts 
partial factors in the limit state design. However, a consistent reliability level may not be 
achieved for a specific design due to local site variability. The Bayesian method may be used 
to calibrate of the partial factors to achieve consistent reliability levels (e.g., Ching et al. 
2013; Juang et al. 2013). 

(5) Use of Bayesian statistics and prior knowledge for selection of characteristic values for 
soil or rock properties. In many cases, determination of the characteristic values of 
geotechnical parameters is a key step for application of Eurocode 7. In geotechnical 
engineering, a transformation model that relates the design soil parameter to the site 
investigation result (e.g., SPT N versus ) is typically established by regional data or general 
data in the literature, which can serve as “prior” information for correlation behaviors among 
various soil parameters. Given the site-specific measurement (e.g., SPT N), one can adopt the 
Bayesian method to obtain a more accurate PDF of a soil parameter (e.g., ) than that 
estimated directly based on transformation model, which can then be used to derive a point 
estimate as well as 95% confidence interval for the soil parameter. Details of the above 
technique are described in a separate report for the discussion group entitled “Transformation 
models and multivariate soil databases”. 

On the other hand, Bayesian equivalent sample method has been developed to integrate 
prior knowledge with the often limited site-specific measurement data and transform the 
integrated knowledge into a large number of equivalent samples using MCMC (Wang and 
Cao 2013; Cao and Wang 2014; Wang and Aladejare 2015; Wang et al. 2016a). Excel-based 
user-friendly software has also been developed for the Bayesian equivalent sample method 
(Wang et al. 2016b). Details of the method, software and application examples are referred to 
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a separate report for the discussion group entitled “Selection of characteristic values for rock 
and soil properties using Bayesian statistics and prior knowledge”. 

 

6.6 CHALLENGES AND LIMITATIONS 
 

Despite the usefulness of the Bayesian methods as described above, the real application of the 
Bayesian method in geotechnical engineering is quite limited. Several possible causes are identified 
for such a dilemma, which may provide future directions for better use of the Bayesian methods. 

First, most engineers are not fully aware of the benefits of Bayesian methods. As a result, there is 
a lack of willingness for common engineers to use the Bayesian method in practice. On the other hand, 
the research on the application of Bayesian methods in geotechnical engineering is quite active. To 
narrow such a gap, researchers in Bayesian geotechnics are encouraged to outreach to the industry to 
improve the communication with the practicing profession. 

Second, most geotechnical engineers do not have special training in Bayesian statistics, which 
indeed requires advanced statistical concepts and in some cases knowledge of programming. This 
challenge may be tackled from two directions. Since reliability-based design courses have been 
incorporated into the curriculum of civil engineering programs in many institutions, instructors in 
these courses may incorporate Bayesian statistics as a main topic that is covered in the course.  
Second, TC304 may also consider organizing short courses on Bayesian statistics at different 
occasions to help interested geotechnical engineers to develop knowledge and capability to solve 
geotechnical problems using the Bayesian method. The Bayesian short course offered at the 
Georisk2017 conference is a good example of such efforts. 

Third, in many occasions, the application of Bayesian methods involves quite some 
computational effort wherein specialized software may be needed. Currently, however, very few 
geotechnical engineering software has such capability. Researchers in the Bayesian geotechnics may 
consider developing easy-to-use procedures for implementing the Bayesian method for geotechnical 
applications. For instance, The Solver in Excel is a powerful and convenient optimization tool which 
may significantly facilitate the application of Bayesian methods in geotechnical engineering. 

Last but not least, how to specify the prior distribution could be challenging. Research can be 
conducted to recommend rational/practical practices on how to derive the prior information in a more 
objective and more defensive way. For instance, the regional experience is often one important source 
of information for deriving the prior distribution. Recent studies have shown that the prior information 
can be derived quantitatively through calibration of the global database (Ching and Phoon 2014), the 
Bayesian equivalent sample method (Wang et al 2016b), or through the multi-level Bayesian 
modeling approach (Zhang et al 2016). The calibration of prior information may significantly 
facilitate the application of Bayesian methods in geotechnical engineering. 

 

6.7 CONCLUSIONS 
 

In this report, a systematic investigation has been conducted on the usefulness of the Bayesian method 
in geotechnical engineering. The investigation showed that the Bayesian method may have a wide 
range of applications whenever information combination is needed. Nevertheless, a knowledge gap is 
observed to exist between the academic research and practical application. Recommendations are 
made to leverage the power of the Bayesian method into practice.  
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7.1 INTRODUCTION 
 
Geotechnical materials are natural materials. Their properties are affected by various factors in natural 
geological processes, such as parent materials, weathering and erosion processes, transportation 
agents, conditions of sedimentation, and other processes (e.g., Mitchell and Soga, 2005). These factors 
vary spatially from one location to another, which subsequently leads to inherent spatial variability 
(ISV) of geotechnical properties (Vanmarcke, 2010). ISV has been considered as a major source of 
uncertainties in soil properties (e.g., Christian et al., 1994; Kulhawy, 1996; Phoon and Kulhawy, 
1999a; Baecher and Christian, 2003; Stuedlein et al. 2012a; Wang et al., 2016). It significantly affects 
the safety (measured by factor of safety, FS) and reliability (measured by probability of failure, Pf, or 
reliability index, ) of geotechnical structures, such as foundations (e.g., Fenton and Griffiths, 2002, 
2003 and 2007; Stuedlein et al. 2012b; Wang and Cao, 2013; Li et al., 2015a; Stuedlein 2017), 
retaining structures (e.g., Fenton and Griffiths, 2005), and slopes (e.g., Griffith and Fenton, 2004, 
2009; Huang et al., 2010; Wang et al., 2011; Li et al., 2014; Jiang et al., 2014; Li et al., 2016a; Xiao et 
al., 2016). ISV shall, hence, be rationally taken into account in geotechnical designs, which constitutes 
a major difference in reliability-based designs (RBD) of geotechnical structures and building 
structures. 

ISV can be explicitly modeled in geotechnical RBD using random field theory (Vanmarcke, 
2010). Figure 7-1 shows major steps for incorporating ISV in geotechnical RBD based on random 
field theory. In general, it starts with probabilistic characterization of ISV based on site investigation 
data (e.g., in-situ/laboratory test results) and site information available prior to the project (namely 
prior knowledge), which determines statistical information of geotechnical design parameters, 
including spatial trend, statistics (e.g., mean and standard deviation), and correlation functions. Such 
information is needed as input for modeling ISV in geotechnical RBD, which represents (or simulates) 
ISV of geotechnical design parameters using random fields with pre-defined statistical information. 
Here, the authors need to emphasize that Sections 7.2-7.5 of this report focus on modeling ISV in 
geotechnical RBD based on known/assumed statistical information of geotechnical parameters. The 
probabilistic characterization of ISV, i.e., how to derive statistical information from site investigation 
data, will be briefly discussed in Section 7.6. Relevant studies on probabilistic characterization of ISV 
of geotechnical parameters are referred to DeGroot and Baecher (1993), Jaksa (1995), Fenton et al. 
(1999a, b), Uzielli et al. (2005), Wang et al., (2010), Dasaka and Zhang (2012), Stuedlein (2011), 
Stuedlein et al. (2012a), Cao and Wang (2013, 2014), Firouzianbandpey et al. (2014, 2015), Ching et 
al., (2015), Cao et al., (2016), Wang et al. (2016), and Tian et al. (2016). 

Based on random field theory, there are generally two ways to model ISV in geotechnical RBD, 
which are named as rigorous (R)-method and approximate(A)-method in this report. As shown in 
Figure 7-1, R-method directly simulates random fields of geotechnical design parameters based on 
their statistical information derived from site investigation without considering influence zones and/or 
critical slip surfaces that affect responses (e.g., resistance moment, bearing capacity, and settlement, 
etc.) of geotechnical structures concerned. With the R-method, a number of random field realizations 
of geotechnical parameters can be directly generated under a full-probabilistic RBD framework using 
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Monte Carlo simulation (MCS) (e.g., Cao et al., 2013; Wang and Cao, 2013; Cao and Wang, 2014; Li 
et al., 2016b). Then, each random field realization is used as input of deterministic geotechnical model 
to predict responses of geotechnical structures concerned in design. By this means, ISV modeling is 
deliberately decoupled from deterministic analyses of geotechnical structures. This provides 
flexibility in choosing different deterministic geotechnical models (for example, both limit 
equilibrium methods and finite element methods can be used as deterministic models to evaluate the 
safety margin of slope stability for each random field realization) and allows searching for critical slip 
surfaces and determining influences zones of soil masses affecting responses of geotechnical 
structures. For example, R-method is applied in random finite element method to model ISV for 
geotechnical probabilistic analysis and risk assessment (e.g., Griffith and Fenton, 2004, 2009; Huang 
et al., 2010, 2013; Stuedlein et al. 2012b; Li et al., 2016a, Xiao et al., 2016), in which ISV modeling 
does not involve information on geotechnical failure mechanisms or influence zones. 

 

 
Figure 7-1 Incorporating spatial variability into geotechnical RBD based on random field theory. 

 
In contrast, A-method uses random field theory to calculate statistics of spatial averages of 

geotechnical design parameters within influence zones and/or along critical slip surfaces affecting 
responses of geotechnical structures (Vanmarcke, 1977; El-Ramly et al., 2002, 2005; Stuedlein et al. 
2012b; Zhang and Chen, 2012; Wang and Cao, 2013). The spatial average of geotechnical design 
parameters over a spatial curve (e.g., slip surfaces) or area (e.g., influence zones) has the same mean 
as geotechnical design parameters at a “point” that is directly simulated in R-method, but its variance 
is reduced due to spatial averaging. The extent of reduction in variance is quantified by variance 
reduction function 2 that is defined as a ratio of the variance of the spatial average over the variance 
of geotechnical design parameters at a “point” (Vanmarcke, 2010). Calculating 2 requires geometric 
information (e.g., location and length) of influence zones and/or critical slip surfaces. Such 
information is, however, unknown prior to geotechnical deterministic analyses and shall be assumed 
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for calculating statistics of spatial averages of geotechnical design parameters in A-method. Hence, 
using A-method in geotechnical RBD, ISV modeling is coupled with geotechnical deterministic 
analyses. After statistics of spatial averages of geotechnical design parameters are calculated, they can 
either be used to determine characteristic values of geotechnical design parameters for 
semi-probabilistic RBD approaches (e.g., Orr, 2015) or be applied to simulating spatial averages 
within pre-defined influence zones and/or along assumed critical failure surfaces under a 
full-probabilistic RBD framework (El-Ramly, 2002, 2006; Wang and Cao, 2013). 

A-method uses spatial averages of geotechnical design parameters as their corresponding 
estimates along critical slip surfaces or within influence zones. However, the spatial average might not 
be the same as “mobilized” values of geotechnical parameters that control responses of geotechnical 
structures concerned in designs, which has been demonstrated under simple stress states (e.g., Ching 
and Phoon, 2012, 2013; Ching et al., 2014). Hence, compared with direct and rigorous modeling of 
ISV using R-method, A-method is an indirect and approximate way to model ISV in geotechnical 
RBD. How such an indirect and approximate modeling of ISV affects RBD of real geotechnical 
structures is unclear. This issue is systematically explored for different geotechnical structures, 
including drilled shaft, sheet pile wall, and soil slope, in this report. In addition, 2 is needed for 
implementing A-method. It can be calculated exactly according to correlation functions of 
geotechnical design parameters, or be evaluated approximately by a simplified formulation to bypass 
the need of determining correlation functions. This report will also discuss effects of different ways to 
calculate 2 on geotechnical RBD.  

 

7.2 PROBABILISTIC MODELING OF SPATIAL VARIABILITY IN 

GEOTECHNICAL RBD 
 

As shown in Figure 7-1, both R-method and A-method can be applied to modeling ISV in 
full-probabilistic RBD approach using MCS. To enable a consistent comparison, this report adopts a 
recently developed MCS-based RBD approach, so-called the expanded RBD approach, to perform 
RBD of geotechnical structures with R-method and A-method, respectively. The expanded RBD 
approach formulates the design process as a systematic sensitivity analysis on possible designs in 
design space (e.g., a possible range of drilled shaft length) defined by geotechnical engineers, in 
which Pf values of all the possible designs are calculated by a single run of MCS. Then, the final 
design is determined according to target reliability levels and economic requirement. Details of 
algorithms and implementation procedures of the expanded RBD approach are referred to Wang 
(2011), Wang et al. (2011), Wang and Cao (2013, 2015), and Li et al. (2016b).  

The expanded RBD approach provides flexibility of modeling ISV in different ways for 
geotechnical RBD, such as R-method and A-method. Based on the expanded RBD approach, this 
report aims to preliminarily reveal effects of indirect and approximate ISV modeling through 
A-method on geotechnical RBD and probabilistic analysis by comparing respective RBD results 
and/or reliability estimates (e.g., Pf) that are obtained using R-method and A-method, and to 
demonstrate effects of different ways to calculate 2. For the illustration and simplification, only 
one-dimensional (1-D) ISV of geotechnical parameters is considered in this report. The following two 
subsections describe 1-D ISV modeling using R-method and A-method, respectively. 

 

7.2.1 Rigorous modeling by random field simulation (R-method) 
 

R-method models ISV of geotechnical parameters in a direct and explicit manner. Consider, for 
example, a geotechnical design parameter X (e.g., effective friction angle ') in a statistically 
homogenous soil layer. As shown in Figure 7-2, the ISV of X with depth (or in some direction) can be 
characterized by a 1-D homogenous lognormal random field X(zi), in which zi is a spatial coordinate 
(e.g., depth in the vertical direction) of the i-th location and X is a lognormal random variable with a 
mean  and standard deviation  (or coefficient of variation COVX=/). In the context of random 
fields, the spatial correlation between variations of X at different locations is characterized by the 
scale of fluctuation and correlation function (Vanmarcke, 1977 and 2010). Here, the correlation 
function is taken as a single exponential correlation function, and the correlation coefficient ij 
between the logarithms [e.g., lnX(zi) and lnX(zj)] of X at i-th and j-th locations is given by: 
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Figure 7-2 Illustration of 1-D spatial variability. 

 ij i, jexp 2 D      (7-1) 

where  = scale of fluctuation; |Di,j| = the distance between i-th and j-th locations. For a given set of 
statistics (including , , and ) and correlation function, the statistically homogenous random field X 
of X can be generated using various simulation techniques, such as correlation matrix decomposition 
(e.g., Wang et al., 2011; Li et al., 2015b, 2016a), local average subdivision (e.g., Fenton and 
Vanmarcke 1990; Fenton and Griffiths, 2008), Karhunen-Loève expansion (e.g., Phoon et al. 2002; 
Cho 2010; Jiang et al. 2015), expansion optimal linear estimation (e.g., Li and Der Kiureghian, 1993; 
Xiao et al., 2016). Consider, for example, using the covariance matrix decomposition method to 
simulate X in this report, by which X can be written as: 

ln X ln Xln X L    I  (7-2) 
where μlnX=lnμX-(σlnx)2/2 and σlnX={ln[1+(σX/μX)2]}0.5 are the mean and standard deviation of the 
logarithm (i.e., lnX) of X, respectively; I=a vector with Nt components that are all equal to one; 
=[1,···, Nt]

T=a standard Gaussian vector with Nt independent components; L=a Nt-by-Nt 
upper-triangular matrix obtained by Cholesky decomposition of the correlation matrix R satisfying 

R L L  (7-3) 
and the (i, j)-th entry of R is given by the correlation function, e.g., Eq. (7-1). Using Eqs. (7-1) - (7-3), 
the ISV of X is explicitly simulated and is used as input in subsequent deterministic analysis of 
geotechnical structures to evaluate their responses (e.g., resistance moment, bearing capacity, and 
settlement, etc.) concerned in RBD. Note that little information on deterministic model of 
geotechnical structures is involved in Eqs. (7-1)-(7-3), making the ISV simulation using R-method be 
decoupled from the geotechnical deterministic analysis. 
 

7.2.2 Approximate modeling by spatial average technique (A-method) 
 
In A-method, the geotechnical design parameter X over a depth interval (e.g., influence zones) or 
along a spatial curve (e.g., critical slip surface of slope stability) is characterized by a single random 
variable XΔz that represents the spatial average of X over the depth interval or along the spatial curve 
and has a reduced variance due to spatial averaging (e.g., Vanmarcke, 1977; Griffiths and Fenton, 
2004; Wang and Cao, 2013). Let Δz denote the length of the depth interval or the spatial curve. Due to 
the spatial averaging over Δz, the variance of the equivalent normal random variable lnX of X is 
reduced, and the variance reduction of lnX is described by a variance reduction function ΓΔz

2 in 
A-method. For example, ΓΔz

2 for the single exponential correlation function given by Eq. (7-1) is 
calculated as (Vanmarcke, 2010) 
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    22
z 2 z 2 2 z 1 exp 2 z                   (7-4) 

 
Note that calculation of ΓΔz

2 depends on the correlation function. Hence, for an exact evaluation 
of ΓΔz

2, the correlation function is needed. This is a non-trivial task in geotechnical design practice 
because proper determination of the correlation function requires a large amount of geotechnical data 
that is usually not available at a specific site for routine geotechnical designs. Based on a limited 
number of geotechnical data obtained from site investigation, the most probable correlation function 
can be selected from a pool of candidates using Bayesian approaches (Cao and Wang, 2014, Tian et al., 
2016). Alternatively, to avoid determining the correlation function, ΓΔz

2 can be approximate as (e.g., 
Vanmarcke, 2010) 

 

2
z

1,         z

z ,  z

  
      

 (7-5) 

 
Eq. (7-5) gives a simplified form of the variance reduction function to conveniently calculate the 

variance reduction factor for various correlation structures, and it is valid for different correlation 
functions (Vanmarcke, 1977). Using Eq. (7-5) in A-method avoids determining the correlation 
function of geotechnical parameters. It is widely used in geotechnical literature (e.g., Vanmarcke, 
1977; Phoon and Kulhawy, 1999b; El-Ramly et al., 2002; Stuedlein et al. 2012b; Wang and Cao, 
2013). Figure 7-3 shows variance reduction functions given by Eqs. (7-4) and (7-5) by a solid line and 
a dashed line, respectively. The difference between the two variance functions is also plotted in Figure 
7-3 by a dotted line. It is shown that the difference increases as z/ increases from 0 to 1 and then 
decreases as z/ increases further. The maximum difference occurs as z/ = 1. Effects of using the 
approximate variance reduction function on geotechnical designs will be discussed later in this report. 

 

Figure 7-3 Comparison of variance reduction functions given by Eqs. (7-4) and (7-5). 
 
Moreover, the geotechnical deterministic model may involve more than one spatial average of X. 

over different sections (e.g., two depth intervals), which are spatially correlated. Let Δz1 and Δz2 
denote the respective lengths of spatial average sections. When using A-method to model 1-D ISV, the 
spatial correlation between spatial averages of X over Δz1 and Δz2 is calculated as: 
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where z0 = separation distance between the two spatial average sections; z1= the distance from the 
beginning of the first section to the beginning of the second section; z12 = the distance from the 
beginning of the first section to the end of the second section; and z2 = the distance from the end of 
the first section to the end of the second section. Γz0

2, Γz1
2, Γz2

2, Γz12
2, ΓΔz1

2, and ΓΔz2
2=the respective 

variance reduction factors of lnX due to the spatial averaging over z0, z1, z2, z12, z1 and z2, which 
are illustrated in Figure 7-2. 

Note that Eqs. (7-4)-(7-6) need the length of spatial average sections (e.g., influence zones for 
side resistance of drilled shafts and the critical slip surface of slope stability) as input information, 
which depends on geotechnical deterministic models. Determining proper spatial average sections is 
pivotal to calculating the variance reduction function in A-method. Hence, A-method couples the ISV 
modeling and geotechnical deterministic analyses, and it incorporates ISV into geotechnical design in 
an indirect and approximate manner. Effects of using A-method to model ISV on geotechnical designs 
can be evaluated by comparing the design results or reliability estimates (e.g., Pf) that are obtained 
using R-method and A-method, respectively. This is discussed using three geotechnical examples 
(including a drilled shaft example, a sheet pile wall example, and a soil slope example) in the 
following three sections. 

 

7.3 Illustrative example I: Drilled Shaft 
 

To explore effects of indirect and approximate modeling of ISV on foundation designs, this section 
redesigns a drilled shaft example using the expanded RBD approach together with R-method and 
A-method to model ISV, respectively. As shown in Figure 7-4, the drilled shaft is installed in loose 
sand with a total unit weight  = 20.0 kN/m3 and mean effective stress friction angle ' = 32º. The 
shaft is assumed to fail in drained general shear under a design compression load F50 = 800 kN with 
an allowable displacement ya=25 mm. The key design parameters in this example are the drilled shaft 
diameter B and depth D, which are required to support the design compression load and to have a 
shaft displacement less than 25 mm. 
 

(a) Random field simulation of ' (b) Influence zones for side resistance Qside 

and tip resistance Qtip 
Figure 7-4 Illustration of spatial variability modeling using R-method [see 7-4(a)] and A-method [see 

7-4(b)] in drilled shaft designs. 
 

The expanded RBD approach is used to determine the minimum feasible design value (i.e., Dmin) 
of D for a given B value. For comparison, R-method and A-method are applied to modeling ISV of ', 
leading to different design results through the expanded RBD approach. In R-method, Eqs. (7-1) - 
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(7-3) are used to directly simulate the random field of ' in the sand layer (see Figure 7-4(a)), where  
varies from 0.2 to 1000m. In contrast, ' in the sand layer surrounding the drilled shaft is modeled by 
'side and 'tip in A-method, which represent the respective spatial averages of ' over influence zones 
for evaluating side resistance Qside and tip resistance Qtip. As shown in Figure 7-4(b), the influence 
zone of Qside is taken as the depth interval from ground surface to the tip and its length is equal to 
shaft depth D. The influence zone of Qtip is taken as a depth interval from La (e.g., min{8B, D}) above 
the tip to Lb (e.g., 3.5B) below the tip, and its maximum length is Dmax+3.5B for a given B, where 
Dmax is the maximum possible value of the shaft depth and is taken as 10m in this example. Note that 
the locations and lengths of influence zones for evaluating Qside and Qtip shall be specified in A- 
method (see Eqs. (7-4) - (7-6)) prior to the design, which depends on the deterministic analysis model 
used in design. More details of modeling and calculations of the drilled shaft example are referred to 
Wang and Cao (2013). 

Figure 7-5 shows the variation of Dmin for B = 1.2m obtained using the expanded RBD approach 
with R-method as a function of normalized  by circles. For each value of normalized , Figure 7-5 
also includes Dmin values obtained using A-method with the exact form (i.e., Eq. (7-4)) and the 
approximate form (i.e., Eq. (7-5)) of variance reduction function by squares and crosses, respectively. 
The Dmin values here are determined according to the target failure probability p

T
 = 0.0047 for 

serviceability limit state, which has been shown to control the design in this example (Wang and Cao, 
2013). As shown in Figure 7-5, for a given value of normalized the circle generally plots closely 
to the squares. The results obtained using the A-method with the exact form of variance reduction 
function agree well with those obtained using R-method. This indicates that the spatial average of ' 
represents “mobilized” value of ' over the influence zones for drilled shaft resistance reasonably well 
in this example. Such an observation is further confirmed by comparing the side resistance estimated 
from realizations of ' random field in R-method and their corresponding spatial averages of ' over 
the shaft depth, as shown in Figure 7-6. 
 

 
Figure 7-5 Comparison of drilled shaft design results using R-method and A-method in expanded 

RBD for B=1.2 m. 
 
Figure 7-5 also compares design results obtained from A-method with the exact form (i.e., Eq. 

(7-4)) and the approximate form (i.e., Eq. (7-5)) of variance reduction function. As  is smaller than 
one tenth of the maximum length Lmax (i.e., Dmax+3.5B in this example) of influence zone for drilled 
shaft resistance or greater than ten times of Lmax, using Eq. (7-4) and (7-5) gives similar design results. 
However, when  is close to Lmax, there is apparent difference between the two set of design results. 
Such a difference is attributed to approximation in variance reduction function. As shown in Figure 
7-3, the maximum difference between variance reduction functions given by Eqs. (7-4) and (7-5) 
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occurs as  is equal to the length of spatial average interval, e.g., Lmax in this example. Hence, when 
the length of influence zone is close to  adopted in design, the approximate variance reduction 
function given by Eq. (7-5) shall be used with caution. 

 

 
Figure 7-6 Comparison of side resistance calculated from realizations of ' random fields and their 

corresponding spatial averages over influence zones for the design with B = 1.2m and D=5.2m. 
 

7.4 Illustrative example II: Sheet Pile Wall 
 

For further illustration, this section redesigns an embedded sheet pile wall example using the 
expanded RBD approach together with R-method and A-method to model ISV in design, respectively. 
As shown in Figure 7-7, the embedded sheet pile wall is designed for a 3-m deep excavation, and is 
installed in a sand layer, where the total unit weight of sand is 20 kN/m3 and effective friction angle ' 
(i.e., lnX in Eq. (7-2)) of sand is normally distributed with a mean of 39° and a standard deviation of 
3.9°. The ground water levels are at the ground surface in front of the wall and at the depth of 1.5m 
behind the wall. In addition, the surcharge q behind the wall is considered as a variable load, which is 
normally distributed and has a mean of 8.02 kPa and a standard deviation of 1.20 kPa. The aim of the 
sheet pile wall design example is to find an embedded depth d that satisfies the moment equilibrium 
about point O and to determine an additional embedded depth d by solving the horizontal force 
equilibrium equation (Wang, 2013). For simplification, d is commonly taken as 0.2d, which often 
leads to conservative designs (e.g., Craig, 2004; Wang, 2013; Li et al., 2016b). Then, the required 
depth Dspw of the sheet pile wall example is equal as 1.2d, and it ranges from 1m to 8m with an 
increment of 0.1m. For a given Dspw value, d (i.e., Dspw/1.2) and d (i.e., 0.2d) are calculated, and the 
net resistance moment MR about point O provided by passive earth pressure is evaluated, as well as 
the net overturning moment MO resulted from the active pressure acting. After that, the FS is obtained, 
details of which are referred to Craig (2004) and Wang (2013). 

The expanded RBD approach is used to determine the minimum feasible design value (i.e., Dmin) 
of Dswp. Similar to the drilled shaft design; R-method and A-method are applied to modeling ISV of ' 
in the sand layer in expanded RBD. In R-method, Eqs. (7-1) - (7-3) are used to directly simulate the 
random field of ' in the sand layer (see Figure 7-7(a)), where  varies from 0.2 m to 1000 m. In 
contrast, ' in the sand layer surrounding the sheet pile wall is modeled by 'O and 'R in A-method, 
which represent the respective spatial averages of ' over influence zones for evaluating MO and MR. 
As shown in Figure 7-7(b), the influence zone of MR is taken as the depth interval from ground 
surface in front of the wall to point O, and its length is equal to d minus over-digging depth(0.3m); the 
influence zone of MO is taken as a depth interval from ground surface behind the wall to point O, and 
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its maximum length is dmax+3.0m for a given B, where dmax is the maximum possible value of the 
embedded depth and is taken as 8.0/1.2 = 6.67m in this example. More details of modeling and 
calculations of this drilled shaft design example are referred to Wang and Cao (2013) and Li et al. 
(2016b). 

 

(a) Random field simulation of ' 
(b) Influence zones for resistance and 

overturning moments 
Figure 7-7 Illustration of spatial variability modeling using R-method [see 7-7(a)] and A-method [see 

7-7(b)] in sheet pile wall designs. 
 
Figure 7-8 shows the variation of Dmin obtained using the expanded RBD approach with 

R-method as a function of normalized  by circles. For each value of normalized , Figure 7-8 also 
includes Dmin values obtained using A-method with the exact form (i.e., Eq. (7-4)) and the 
approximate form (i.e., Eq. (7-5)) of variance reduction function by squares and crosses, respectively. 
The Dmin values here are determined according to p

T
 = 7.2×10-5 adopted in Eurocode 7(e.g., Orr and 

Breysse, 2008). As shown in Figure 7-8, for a given value of normalized the circle generally plots 
closely to the squares. The results obtained using A-method with the exact form of the variance 
reduction function agree well with those obtained using R-method. This indicates that spatial averages 
of ' represents “mobilized” values of ' over the influence zones for MR and MO reasonably well in 
this example. Such an observation is further confirmed by comparing MR and MO values estimated 
from realizations of ' random field in R-method with those calculated from their corresponding 
spatial averages of ' over influence zones for MR and MO, as shown in Figures 7-9(a) and 7-9(b), 
respectively. 

Figure 7-8 also compares design results obtained from A-method with the exact form (i.e., Eq. 
(7-4)) and the approximate form (i.e., Eq. (7-5)) of variance reduction function. Similar to the drilled 
shaft design example, when  is close to Lmax, there is apparent difference between the two set of 
design results due to the obvious difference between variance reduction functions calculated from Eqs. 
(7-4) and (7-5) at  = Lmax (see Figure 7-3). This, again, indicates that, as the length of influence zone 
is close to  adopted in design, using the approximate variance reduction function given by Eq. (7-5) 
in A-method may lead to inaccurate design results. Although using Eq. (7-5) in A-method gives 
conservative designs in the drilled shaft design example (see Figure 7-5) and the sheet pile design 
example (see Figure 7-8) as  is close to Lmax, such an observation cannot be generalized, as 
illustrated using a soil slope example in the next section. 
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Figure 7-8 Comparison of sheet pile wall design results using R-method and A-method in expanded 

RBD. 

 

(a) Resistance moment (MR) (b) Overturning moment (MO) 
Figure 7-9 Comparison of resistance and overturning moments estimated from realizations of ' 
random fields and their corresponding spatial averages over influence zones for the design with 

D=7.9m. 
 

7.5 Illustrative example III: Lodalen Slide 
 

This section illustrates effects of using different spatial variability modeling methods (i.e., R-method 
and A-method) on the “calculated” reliability (or probability of failure) of slope stability using 
Lodalen slide example. The Lodalen slide occurred in 1954 nearby the Oslo railway station, Norway. 
As shown in Figure 7-10, the slope has a height of 17m and a slope angle of 26°. The stratigraphy of 
slope is comprised of a marine clay layer underlying a 1 m thick clay crust at the top. The clay crust 
does not significantly affect the stability of the slope (e.g., El-Ramly et al., 2006) and is, hence, not 
shown in Figure 7-10. The spatial variability of effective cohesion c', friction angle ' and pore water 
pressure u in the marine clay layer is considered in this example, and they have respective mean 
values of 10 kPa, 27.1°, and 0m of water and respective standard deviations of 1.72kPa, 2.21°, and 
0.34m of water (e.g., El-Ramly et al., 2006). The correlation structures of the three parameters are 
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considered as identical and are taken as an isotropic single exponential correlation function with a 
scale of fluctuation  ranging from 2m to 5000m. More details of the Lodalen slide and its 
probabilistic assessment (including uncertainty characterization and propagation) are referred to 
El-Ramly et al. (2006). 
 

(a) Random field simulation of ' 

 

(b) Influence zone for FS 

Figure 7-10 Illustration of spatial variability modeling for Lodalen slide using R-method 
[see 7-10(a)] and A-method [see 7-10(b)]. 

 
For illustration, R-method and A-method are applied to modeling spatial variability of effective 

shear strength parameters (i.e., c' and ') in the marine clay layer. In this example, the spatial 
variability of u is always explicitly simulated as a random field by R-method no matter which method 
is used to modeling spatial variability of c' and '. Using R-method, random fields of c' and ' can be 
directly simulated in the marine clay layer without needs of information on the slip surface of Lodalen 
slide. In contrast, such information is needed for determining the influence zone of sliding resistance 
of Lodalen slope in A-method. For simplicity, the critical slip surface adopted by El-Ramly et al. 
(2006) is considered in this report. Then, c' and ' along the critical slip surface are modeled by c'A 
and 'A in A-method, which represent the respective spatial averages of c' and ' over the critical slip 
surface for evaluating its corresponding FS. The variances of c'A and 'A are calculated using their 
respective variances at the “point” level and the variance reduction function given by Eq. (7-4) (exact 
form) or Eq. (7-5) (approximate form), in which the length of spatial average interval is taken as the 
length of the critical slip surface, i.e., about 52m in this example. Using R-method and A-method to 
model spatial variability of c' and ' in the marine clay layer, the occurrence probability Pf of Lodalen 
slide along the prescribed critical slip surface is calculated for different values of  varying from 2m 
to 5000m. 

Figure 7-11 shows the variation of Pf values obtained using R-method as a function of 
normalized  by circles. For each value of normalized , Figure 7-11 also includes Pf values obtained 
using A-method with the exact form (i.e., Eq. (7-4)) and the approximate form (i.e., Eq. (7-5)) of 
variance reduction function by squares and crosses, respectively. It is shown thatthe circles generally 
plot closely to the squares. The results obtained using the A-method with the exact form of the 
variance reduction function agree well with those obtained using R-method. This indicates that the 
spatial average of effective shear strength of the marine clay represents the “mobilized” value of 
effective shear strength over the critical slip surface reasonably well in this example. Similar to 
previous two examples, such an observation is further confirmed by comparing FS values estimated 
from realizations of c' and ' random fields in R-method with those calculated from their 
corresponding spatial averages over the critical slip surface for a given value (e.g., m), as shown 
in Figure 7-12. 

Figure 7-11 also compares Pf values obtained from A-method with the exact form (i.e., Eq. (7-4)) 
and the approximate form (i.e., Eq. (7-5)) of variance reduction function. When  is close to the 
length of the critical slip surface, the crosses plot below the squares, indicating that using the 
approximate form (i.e., Eq. (7-5)) of variance reduction function leads to underestimation of Pf at 
relatively large failure probability levels, which is un-conservative. Such un-conservative results are 
attributed to overestimation of variance reduction function by Eq. (7-5) and, hence, variance of shear 
strength parameters. This, again, indicates that, as the length of influence zone is close to , Eq. (7-5) 
shall be used with caution because un-conservative reliability estimates might be obtained when it is 
applied. 
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Figure 7-11 Comparison of occurrence probabilities of Lodalen slide using R-method and A-method 

in MCS. 

 
Figure 7-12 Comparison of safety factors of Lodalen slope calculated from random fields and spatial 

averages of effective shear strength parameters of the marine clays for  = 50m. 
 

7.6 Probabilistic characterization of inherent spatial variability 
 

It is customary to decompose the spatial distribution of a soil property y(z) into a spatial trend term t(z) 
and a spatial variation term w(z): 
 
y(z) t(z) w(z)   (7-7) 
 
where w(z) is usually modeled as a zero-mean stationary random field with a standard deviation =  
and with a finite-scale correlation structure characterized by an auto-correlation function (ACF). The 
key parameter for the ACF is the scale of fluctuation . Previous sections in this chapter have 
assumed t(z), , and  are known. In reality, they are unknown and should be estimated based on 
site-specific investigation data. Due to the limited site-specific data, t(z), , and  cannot be estimated 
with full certainty. This section considers the statistical uncertainty for t(z), , and . 
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7.6.1 Statistical uncertainty in t(z) 
 

The trend t(z) for ISV is clearly site-specific. t(z) can be estimated using regression based on the site 
investigation data. It is customary to assume that the estimated trend is the same as the actual trend. 
This is the underlying assumption for de-trending: data after de-trending (residuals) are treated as the 
zero-mean w(z) data (e.g., Fenton 1999b; Uzielli et al. 2005). However, the de-trended data will not 
have zero mean if the estimated trend is not the actual trend. Past studies have recognized that 
de-trending deserves more rigorous attention (e.g., Kulatilake 1991; Li 1991; Jaksa et al. 1997; Fenton 
1999a). The estimated trend is in principle not the same as the actual trend. Ching et al. (2017) 
addressed the identifiability of t(z) in the presence of ISV using cone penetration test (CPT) data. 
They showed that if the CPT data is not “thick” enough, it is not always possible to discriminate 
between t(z) and w(z) because only their summation, i.e., y(z), is measured. “Thick” means the CPT 
length is greater than 50 (Ching et al. 2017): many soil layers are not “thick” enough. There are two 
scenarios that can hinder the demarcation between t(z) and w(z): (a) a very flexible regression 
function so that t(z) falsely over-fits the data; (b) a poor regression so that t(z) does not fit the data 
well, but the residual is falsely interpreted as w(z) with a large scale of fluctuation. Scenario (a) can be 
mitigated if a simple regression function (e.g., a linear function) is adopted or if the Sparse Bayesian 
Learning (Tipping 2001) framework is adopted.  Moreover, it is hard to mitigate scenario (b). One 
possible solution discovered in Ching et al. (2017) is to adopt an auto-correlation model that produces 
“smooth” w(z) realizations, such as the square exponential model. However, Ching et al. (2017) 
opined that the auto-correlation model should be chosen based on how well it captures the real data 
characteristics, rather than on its computational advantage.  

 

7.6.2 Statistical uncertainty for  and  
 

The  (or COV) and  for ISV are also site-specific, because the COV and  at one site are typically 
not the same as those at another site. The ranges summarized in previous tables represent past 
experiences in the literature. Although it is possible to assume conservative values for COV and  
based on these tables, as suggested by Honjo and Setiawan (2007), there are sometimes practical 
difficulties for doing so. First of all, COV and  values in these tables vary in a wide range. For 
instance, the COV for ISV of the undrained shear strength of a clay varies from 6% to 80% (Phoon 
and Kulhawy 1999a). Its vertical  can be as low as 0.1 m (Stuedlein 2011; Stuedlein et al. 2012a) to 
as great as 6.2 m (Phoon and Kulhawy 1999a). Its horizontal  is known in a very limited way (one 
clay site in Stuedlein et al. (2012a) ranging from 4 to 8 m, 3 studies in Phoon and Kulhawy 1999a, 
ranging from 46 to 60 m). If the conservative COV value is taken to be 80% (the upper bound), this 
would be too conservative for most sites. If 80% is excessively conservative, which COV is 
reasonably conservative? It is not trivial to answer this question. The same question can be asked 
when  is selected based on the ranges in Phoon and Kulhawy (1999a). Moreover,  may depend on 
the problem scale (Fenton 1999b) and COV and  may also depend on the adopted trend function and 
the sampling interval (Cafaro and Cherubini 2002). The scale considered in previous studies may not 
be similar to the scale applicable for the geotechnical project at hand. The trend function and sampling 
interval studied in the literature may not be applicable to the conditions in the project at hand. 

Jaksa et al. (2005) took a different strategy: they suggested using a “worst case” , which for the 
example of a 3-storey, nine-pad footing building examined, is equal to the spacing between footings. 
This “worst case” strategy circumvents the need to estimate  from past experiences. However, “the 
spacing between footing” is only applicable to the footing example. Table 7-1 shows the worse-case 
s reported in previous studies. The worst-case SOF is typically comparable to some multiple of the 
characteristic length of the structure (e.g., structure bay width or spacing between footings, height of 
retaining wall, diameter of tunnel, depth of excavation, height of slope). However, there is no 
universal way of determining the “worse-case” . 

It is more prudent to implement the site investigation data to obtain the site-specific COV and  
than to assume their values using past experiences or to assume  to be the “worse-case” . There are 
several techniques that can be employed to estimate COV and  (in particular ), such as the method 
of moments (Uzielli et al. 2005; Dasaka and Zhang 2012; Firouzianbandpey et al. 2014; Lloret-Cabot 
et al. 2014), the fluctuation function method (Wickremesinghe and Campanella 1993; Cafaro and 
Cherubini 2002), the maximum likelihood method (DeGroot and Baecher 1993), and the Bayesian 
method (Wang et al. 2010; Cao and Wang, 2013; Tian et al., 2016; Wang et al., 2016; Ching and 
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Phoon 2017). However, the main difficulty lies in the fact that the amount of available information in 
a typical site investigation program is not sufficient to accurately determine the site-specific COV and 
. Ching et al. (2015) showed that the vertical  in a soil property cannot be estimated accurately if 
the total depth of the investigation data is less than 20 times of the actual vertical  and that the COV 
cannot be estimated accurately if the total depth is less than 4 times of the vertical . They also found 
another requirement regarding the sampling interval. The vertical  cannot be estimated accurately if 
the sampling interval is larger than 1/2 of the vertical . Furthermore, Ching et al. (2015) and Ching et 
al. (2017) showed that for soil layers that are not “thick” enough (thickness < 50), there can be a 
strong tradeoff between estimated COV and : there are numerous combinations of COV and  that 
are all plausible with respect to the observed site-specific data. This tradeoff is closely related to the 
over-fit and poor-fit scenarios mentioned earlier (Ching et al. 2017). Accordingly, when insufficient 
data exists to determine the ISV parameters for a given site, the geological processes responsible for 
deposition and aging of the soil units of interest should be identified and previously reported ISV 
parameters for similar geological units should be used as a proxy for the site specific data, and with all 
due caution. 

 

Table 7-1 Worse-case SOFs reported in previous studies. 

Study Problem type 
“Worse case” 

definition 
Characteristic 

length 
Worse-case SOF 

Jaksa et al. (2005) 
Settlement of a 

nine-pad footing 
system 

Under-design 
probability is 

maximal 

Footing spacing 
(S) 1S 

Fenton and Griffiths 
(2003) 

Bearing capacity of 
a footing on a c- 

soil 

Mean bearing 
capacity is minimal 

Footing width (B) 1B 
Soubra et al. (2008) 

Fenton et al. (2005) 
Active lateral force 
for a retaining wall 

Under-design 
probability is 

maximal 
Wall height (H) 0.5~1H 

Fenton and Griffiths 
(2005) 

Differential 
Settlement of 

Footings 

Under-design 
probability is 

maximal 

Footing spacing 
(S) 1S 

Breysse et al. (2005) 
Settlement of a 
footing system 

Footing rotation is 
maximal 

Footing spacing 
(S) 0.5S 

Different 
settlement between 

footings is 
maximal 

Footing spacing 
(S) 

Footing width (B) 

f(S,B) 
(no simple equation) 

Griffiths et al. 
(2006) 

Bearing capacity of  
footing(s) on a  = 

0 soil 

Mean bearing 
capacity is minimal 

Footing width (B) 0.5~2B 

Ching and Phoon 
(2013) Overall strength of 

a soil column 
Mean strength is 

minimal 
Column width (W) 

1W (compression) 
0W (simple shear) 

Ching et al. (2014) 

Ahmed and Soubra 
(2014) 

Differential 
Settlement of 

Footings 

Under-design 
probability is 

maximal 

Footing spacing 
(S) 1S 

Hu and Ching 
(2015) 

Active lateral force 
for a retaining wall 

Mean active lateral 
force is maximal 

Wall height (H) 0.2H 

Stuedlein and Bong 
(2017) 

Differential 
Settlement of 

Footings 

Under-design 
probability is 

maximal 

Footing spacing 
(S) 1S 

Ali et al. (2014) 
Risk of infinite 

slope 

Risk of rainfall 
induced slope 

failure is maximal 
Slope height (H) 1H 
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7.7 SUMMARY AND CONCLUDING REMARKS 
 
This reports summarized major procedures for modeling spatial variability in geotechnical 
reliability-based design, based on which two methods, so-called rigorous(R)-method and approximate 
(A)-method are introduced. The probabilistic characterization of ISV, i.e., how to derive statistical 
information about geotechnical parameters such as spatial trend, standard deviation, and scale of 
fluctuation from site investigation data, is also briefly discussed. R-method directly simulates random 
fields of geotechnical design parameters without considering influence zones and/or critical slip 
surfaces that affect responses (e.g., resistance moment, bearing capacity, and settlement, etc.) of 
geotechnical structures. With R-method, ISV modeling is deliberately decoupled from geotechnical 
deterministic analyses. In contrast, A-method uses random field theory to calculate statistics of spatial 
averages of geotechnical design parameters within influence zones and/or along critical slip surfaces 
affecting responses of geotechnical structures. Information on influence zones and critical slip 
surfaces is needed for calculating statistics of the spatial average of geotechnical design parameters in 
A-method. Hence, using A-method in geotechnical RBD, ISV modeling is coupled with geotechnical 
deterministic analyses. Based on R-method and A-method, Monte Carlo simulation-based approaches 
(e.g., expanded RBD) is applied to explore effects of different spatial variability modeling methods on 
RBD and probabilistic analysis of geotechnical structures, including drilled shaft, sheet pile wall and 
soil slope. The major conclusions drawn from this study are given below: 

(1) Using A-method with exact variance reduction function gives design results and reliability 
estimates with satisfactory accuracy provided that reasonable influence zones or critical slip 
surfaces are assumed prior to the analysis. For a given influence zone or critical slip surface, 
the spatial average serves as a reasonable estimate of “mobilized” shear strength parameters 
for geotechnical RBD and probabilistic analysis when 1-D spatial variability is considered. 

(2) Compared with using exact form of variance reduction function (e.g., Eq. (7-4)), using 
approximate form of variance reduction function (e.g., Eq. (7-5)) in A-methods might lead to 
conservative or un-conservative reliability estimates and design results, depending on the 
failure probability level. As the length of spatial average interval is close to the scale of 
fluctuation, Eq. (7-5) shall be used with particular caution. Note that the effect of the 
simplified form of variance reduction function can be amplified when 2-D and 3-D spatial 
variability are considered because reductions in variances of different dimensions are 
basically “multiplied”. 

(3) Results obtained in this report are preliminary in the sense that failure mechanisms were 
prescribed prior to the analysis in the three examples and only 1-D spatial variability was 
taken into account. This is, however, a good starting point to explore the problems concerned 
in this report for real geotechnical structures, which is beneficial to the development of 
semi-probabilistic geotechnical RBD codes, such as Eurocode 7, and to communication with 
other research communities with limited background of geotechnical reliability and risk. 
More rigorous explorations are also warranted that account for effects of different failure 
mechanisms and 2-D (or 3-D) spatial variability. Some valuable attempts have been made in 
literature (e.g., Ching and Phoon, 2013; Ching et al., 2014, 2016). 
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Discussions and Replies 

 
After the interim report was released, constructive comments and suggestions are gratefully received 
from group members (including Jin-Song Huang, Shin-ichi Nishimura and Armin Stuedlein) and 
Jianye Ching. Their comments have been incorporated into this final report. Some discussions are 
summarized in this section and are listed below by the date they were received.  
 
Discussion by Jianye Ching (National Taiwan University, Taiwan) 
 
I have the following questions and comments: 
1. I understand your D-method is the rigorous method, such as random finite element. However, I do 

not understand why it is called "decoupled" method. Maybe it is because D-method does not need to 
worry about the critical slip surface (?). However, this does not imply D-method does not consider 
critical slip surface. In fact, it DOES consider the critical slip surface, but in an automatic way: 
D-method automatically finds it. The term "decoupled" can be misleading because it seems to 
suggest that the rigorous method decouples the random field simulation with the finding of the 
critical slip surface, which seems to be not true to me. 

2. My understanding is that your C-method is an approximate method that treats the critical slip 
surface as a prescribed surface (?). Again, I do not understand why it is called "coupled". My 
feeling is that it should actually be called "decoupled" because the slip surface is prescribed. You 
can simulate random field along it without searching for the actual critical slip surface (which is not 
prescribed). Therefore, C-method decouples the random field simulation with the finding of the 
critical slip surface. 
Maybe it will be simpler and also clearer to name them as rigorous and approximate methods, or 

non-prescribed and prescribed methods? 
 

Reply by Dianqing Li & Zijun Cao (Wuhan University, China) 
 
Thank you for the comments. We agree that the wording “decoupled” and “coupled” is misleading. 
Actually, we used “decoupled” and “coupled” methods in the interim report to highlight that:  
 Spatial variability modeling using D-method does NOT require information on influence zones 

and/or critical slip surfaces which shall be determined from deterministic analyses of geotechnical 
structures. This allows spatial variability modeling to be decoupled from deterministic analyses 
of geotechnical structures.  

 Spatial variability modeling using C-method needs information on influence zones and/or critical 
slip surfaces which is unknown prior to geotechnical deterministic analyses and shall be assumed 
for calculating statistics of spatial averages of geotechnical design parameters. Hence, using 
C-method in geotechnical RBD, spatial variability modeling is coupled with geotechnical 
deterministic analyses.  

As pointed in your comment 1, spatial variability modeling will eventually affect the mechanical 
analysis of geotechnical structures, e.g., finding of critical slip surface in random finite element 
analysis, for each realization of random fields generated in D-method.  
On the other hand, although the critical slip surface is prescribed in C-method and searching for 
critical slip surface is avoided, spatial variability is still coupled with deterministic analysis because 
information from deterministic analysis (e.g., geometry and locations of critical slip surface) is used in 
C-method to model spatial variability. 
In summary, it is NOT accurate to say that spatial variability modeling is decoupled or coupled from 
deterministic analysis based on, only, whether information from deterministic analysis is used in 
spatial variability modeling or not. As suggested, we have renamed the two methods as “rigorous” 
and “approximate” methods in the final report.  
 

Following-up discussion by Jinsong Huang (The University of Newcastle, Australia) 
 
I agree with Jianye that the terminology of C-method and D-method are confusing. “A and B are 
coupled” means that the change in A will affect B and vice versa. Although the failure mechanism is 
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affected by the uncertain material properties, the uncertain material properties are independent of 
failure mechanism. 
  

I have two comments: 
1. The second line on page 2.  I suggest removing “limit equilibrium method”. The Random Finite 

Element Method finds the failure mechanism automatically for a given realization of random field.  
The Limit Equilibrium Method predefines the shape of slip surfaces, which I believe, is 
inappropriate when the material properties are modelled as random fields. It is hard to believe that 
we can predefine the shape of slip surface if the strengths of soils are spatially nonhomogeneous. 

2. For the Lodalen slide example, only one fixed slip surface is considered. In geotechnical 
reliability-based design, when the geometry of slope is varied, how can we find such a slip 
surface? 

 

Reply by Dianqing Li & Zijun Cao (Wuhan University, China) 
 
We agree that the wording “decoupled” and “coupled” is misleading and have renamed the two 
methods as “rigorous” and “approximate” methods in the final report. Please refer to responses to 
Jianye’s comments above. 
Re the comment 1, “limit equilibrium method and finite element method” are taken as examples of 
different geotechnical models. We do NOT mean that limit equilibrium methods can allow automatic 
searching of critical slip surfaces with various shapes in this report although this might be possible for 
rigorous limit equilibrium procedures, such as Morgenstern-Price method. We have revised the report 
to clarify that limit equilibrium method and finite element method are examples of different 
deterministic analysis models of slope stability. 
Re the comment 2, we agree that, when slope geometry is changed, the critical slip surface shall be 
determined by performing deterministic analysis, such as finite element analysis. When spatial 
variability is considered, the critical slip surface is hardly fixed. In this report, we aims to explore two 
problems:  
 How does indirect and approximate modeling of inherent spatial variability using the A-method 

affect reliability-based design of real geotechnical structures? 
 How does using different ways to calculate the variance reduction function in A-method affect 

geotechnical reliability-based design? 
For the purpose of simplification, the critical slip surface adopted by El-Ramly et al. (2006) is used in 
illustrative example III. We consider this simplification as a starting point to explore the problems 
concerned in this report for real geotechnical structures although the results might be preliminary due 
to the simplification, as pointed out by point (3) in section 7.6 entitled “Summary and concluding 
remarks” of the report. We also agree that more rigorous explorations are warranted that account for 
effects of different failure mechanism/paths, such as attempts made by Ching and Phoon (2013) and 
Ching et al., (2014, 2016). 
 

REFERENCE: 
 
Ching, J. Y., Phoon, K. K., 2013. Mobilized shear strength of spatially variable soils under simple 

stress states. Structural Safety, 41(3), 20-28.  
Ching, J. Y., Phoon, K. K., Kao, P. H., 2014. Mean and variance of mobilized shear strength for 

spatially variable soils under uniform stress states. Journal of Engineering Mechanics, 140(3), 
487-501. 

Ching, J. Y., Hu, Y. G., Phoon, K. K., 2016. On characterizing spatially variable soil shear strength 
using spatial average. Probabilistic Engineering Mechanics, 45, 31-43. 

El-Ramly, H., Morgenstern, N. R., Cruden, D. M., 2006. Lodalen slide: A probabilistic assessment. 
Canada Geotechnical Journal, 43(9), 956-968. 

 

Discussion by Shin-ichi Nishimura (Okayama University, Japan) 
 
I believe one of most important points for the modeling of the spatial variability is separating the trend 
and the random variable. For this task, the information statistics such as AIC, BIC, and etc. 
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is  very effective. In the report, this issue is not presented well. If possible, I hope it should be 
considered in report. I will attach my example. 
 

Reply by Dianqing Li & Zijun Cao (Wuhan University, China) 
 
Thank you for the comments. As noted by Jianye in his reply below, this report focuses on modeling 
inherent spatial variability in geotechnical reliability-based design based on known/assumed statistical 
information of geotechnical parameters, and does not discuss probabilistic characterization of spatial 
variability, i.e., how to derive statistical information from site investigation data and prior knowledge. 
Some relevant studies on probabilistic characterization of spatial variability of geotechnical 
parameters are provided in the report for reference. Please see Paragraph 2 of section 7.1 entitled 
“Introduction”.  
 

Reply by Jianye Ching (National Taiwan University, Taiwan) 
 
You are very right that the identification of trend is crucial. I think Dianqing's report focuses on the 
modeling of spatial variability, not in the characterization of spatial variability. 
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Chapter 8 Imprecise Probabilistic and Interval Approaches Applied to Partial 

Factor Design 
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8.1 CHAPTER AT A GLANCE 
 
EN 1997, adopted as Eurocode 7, is intended to be applied to the geotechnical aspects of the design of 
civil engineering works. The limit state design concept adopted by Eurocode 7 is used in conjunction 
with a partial factor methodology. The selection of appropriate partial factors is important to ensure 
the reliability of geotechnical design to Eurocode 7, as design values are determined by applying 
partial factors to characteristic values. When the partial factor format is first introduced, it should 
preferably produce a design comparable to the resultant from the safety factor methodology, 
promoting the continuity of past experience. Actually, the partial factor format through the Design 
Approach DA.2* is based on a modified global safety concept, noted that different systems associated 
to the same factor may have a different probability of failure due to the fact that important variabilities 
are disregarded. At the present, the performance of a partial factor format is measured by the ability to 
produce a design achieving a desired target reliability within acceptable margin of error. To achieve 
the required target reliability, Eurocode 7 does not provide any variation in the partial factors but 
rather requires that greater attention is given to other accompanying measures related to design 
supervision and inspection differentiation by a system of failure control. The issue of adopting 
multiple resistance partial factors in geotechnical design is then on discussion. 

At a glance, multiple resistance partial factors should be clearly related to the determination of 
characteristic values, primary cause of inconsistent reliability evaluations. Robustness is considered as 
one of the primary requirements in a design process accounting for uncertainty. Although there is no 
universal definition for robustness, the concept expresses the degree of independence among any 
changes in the whole set of parameters and the fluctuation of the response considered a global 
specification on a minimum variance with respect to input variations. The state of play on the 
assessment of geotechnical robustness has been recently extended to partial factor design. The issue of 
adopting multiple resistance partial factors in geotechnical design is then addressed. This discussion 
involves a comprehensive design example referred to a strip spread foundation designed by the 
Eurocode 7 methodology. A comparative study for bearing capacity safety assessment comprehending 
combinatory geotechnical characteristic values and variabilities is then presented wherein the 
influence of variability of soil shear strength parameters on resistance partial factor design is 
investigated. Principal conclusions detail at first the particular conditions on how it is possible to 
achieve a reasonable reliability level in geotechnical design for a set of scenarios. Thereafter, the 
shear strength parameters of the foundation soil are implemented as intervals based on which the 
characteristic values for design are derived. On this case study the shear strength parameter friction 
angle of the foundation soil is further separately implemented as interval in the format of a conditional 
analysis. Limit state imprecise probabilistic grid-based and fuzzy-based approaches applied to the 
Eurocode 7 partial factor design for bearing capacity safety assessment are then pursued. It is 
observed the format of a sensitivity analysis for a group of model cases, considered for demonstration 
only normal variabilities. Imprecise approaches to robust design are then discussed on the calculation 
of resistance factors capable to maintain a more uniform reliability level over a range of design 
parameters. At last, the safety margin is expressed in the interval format so that a nonprobabilistic 
concept of reliability is approached by bounds. 
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8.2 DESIGN EXAMPLE 
 
The design example is referred to the strip spread foundation on a relatively homogeneous soil shown 
in Figure 8-1, wherein groundwater level is away. Considered the vertical noneccentric loading 
problem and the calculation model for bearing capacity, the performance function may be described 
by the simplified Equation (8-1): 
 

 s f f fM f B,  D,  ,  c ,  ,  ,  P,  Q     (8-1) 

 
if B is the foundation width; D is the soil height above the foundation base; γs is the unit weight of the 
soil above the foundation base; cf is the cohesion of the foundation soil; φf is the friction angle of the 
foundation soil; γf is the unit weight of the foundation soil; P is the dead load; and Q is the live load. 
 

 
Figure 8-1.Strip spread foundation. 

 
The strip spread foundation is designed by the Eurocode 7 methodology, Design Approach 

DA.2*. At first, a comparative study for bearing capacity safety assessment comprehending multiple 
resistance partial factors for a set of scenarios involving combinatory geotechnical characteristic 
values and variabilities is presented. For the purpose, the considered correlation coefficients between 
the basic input variables are presented in Table 8-1 and the description of basic input variables, with 
different types of distributions, is summarised in Table 8-2. 
 

Table 8-1.Correlation coefficients between the basic input variables. 
Correlation matrix 

ρx1x1 ρx1x2 ρx1x3 ρx1x4 ρx1x5 ρx1x6 

= 

1.0 0.0 0.5 0.9 0.0 0.0 
ρx2x1 ρx2x2 ρx2x3 ρx2x4 ρx2x5 ρx2x6 0.0 1.0 0.0 0.0 0.0 0.0 
ρx3x1 ρx3x2 ρx3x3 ρx3x4 ρx3x5 ρx3x6 0.5 0.0 1.0 0.5 0.0 0.0 
ρx4x1 ρx4x2 ρx4x3 ρx4x4 ρx4x5 ρx4x6 0.9 0.0 0.5 1.0 0.0 0.0 
ρx5x1 ρx5x2 ρx5x3 ρx5x4 ρx5x5 ρx5x6 0.0 0.0 0.0 0.0 1.0 0.0 
ρx6x1 ρx6x2 ρx6x3 ρx6x4 ρx6x5 ρx6x6 0.0 0.0 0.0 0.0 0.0 1.0 

x1-γs; x2-cf; x3-φf; x4-γf; x5-P; x6-Q; ρ-coefficient of correlation. 
 

Table 8-2.Summary description of basic input variables. 
Basic input variables Distributions Mean value µ Coefficient of variation Cv 

B (m) Deterministic EC7 DA.2* results 0.00 
D (m) Deterministic 1.00 0.00 

γs (kN/m3) Normal 16.80 0.05 
cf (kN/m2) Lognormal 14.00 0.20;0.40;0.60 
φf (º) Lognormal 32.00 0.05;0.10;0.15 

γf (kN/m3) Normal 17.80 0.05 
P (kN/m) Normal 370.00 0.10 
Q (kN/m) Normal 70.00 0.25 
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Regarding the imprecise probabilistic grid-based analysis, the considered correlation coefficients 
between the basic input variables are either presented in Table 8-1 and the description of basic input 
variables, with different types of distributions, is summarised in Table 8-3. In addition, the imprecise 
probabilistic fuzzy-based analysis is performed on uncorrelatedness assumption and Table 8-4 
summarises the description of basic input variables, including both random and interval variables. The 
coefficient of variation is in agreement with published values from the literature. 
 

Table 8-3.Summary description of basic input variables on grid-based analysis. 
Basic input variables Distributions Mean value µ Coefficient of variation Cv 

B (m) Deterministic EC7 DA.2* results 0.00 
D (m) Deterministic 1.00 0.00 

γs (kN/m3) Normal 16.80 0.05 
cf (kN/m2) Lognormal [0.00,40.00] 0.40 
φf (º) Lognormal [25.00,40.00] 0.10 

γf (kN/m3) Normal 17.80 0.05 
P (kN/m) Normal 370.00 ˅ 1110.00 0.10 
Q (kN/m) Normal 70.00 ˅ 210.00 0.25 

Lower load combination: µP=370.00 [kN/m] ˄ µQ=70.00 [kN/m]. 
Higher load combination: µP=1110.00 [kN/m] ˄ µQ=210.00 [kN/m]. 
 

Table 8-4.Summary description of basic input variables on fuzzy-based analysis. 
Basic input variables Distributions Mean value µ Coefficient of variation Cv 

B (m) Deterministic EC7 DA.2* results 0.00 
D (m) Deterministic 1.00 0.00 

γs (kN/m3) Normal 16.80 0.05 
cf (kN/m2) Deterministic 0.00 0.00 
φf (º) Interval [25.00,40.00] 0.00 

γf (kN/m3) Normal 17.80 0.05 
P (kN/m) Normal 370.00 ˅ 1110.00 0.10 
Q (kN/m) Normal 70.00 ˅ 210.00 0.25 

Lower load combination: µP=370.00 [kN/m] ˄ µQ=70.00 [kN/m]. 
Higher load combination: µP=1110.00 [kN/m] ˄ µQ=210.00 [kN/m]. 
 

The imprecise probabilistic grid-based analysis is performed in a set of scenarios wherein the 
shear strength parameters of the foundation soil are jointly implemented as intervals, based on which 
the characteristic values for design are derived and then combined as mean values in the reliability 
evaluation. The interval model is further combined with the other uncertain parameters, all of them 
characterised as random variables including dependencies. In contrast, the imprecise probabilistic 
fuzzy-based analysis is performed in a scenario wherein the shear strength parameter friction angle of 
the foundation soil is separately implemented as interval in the format of a conditional analysis and 
then combined with other probabilistic parameters, considered a null cohesion of the foundation soil. 
Thereby, mean values are assigned for the determination of characteristic values for each geotechnical 
parameter, noted that the characteristic load values are considered as 95% fractile values from the 
considered normal probability distribution and the remaining parameters are deterministic. Monte 
Carlo simulation (MCS) is further used on testing. 
 
8.3 RESULTS AND DISCUSSION 
 
A cautious estimate of the 95% reliable mean value, Equation (8-2), or a cautious estimate of the 5% 
fractile value, Equation (8-3), are considered for the determination of characteristic values for each 
geotechnical parameter by assuming an underlying normal probability distribution for a number of 
five test results, wherein the coefficient kn,mean is considered as 0.74 and the coefficient kn,low is 
considered as 1.80 regarding the mean values and known coefficients of variation on Table 8-2: 
 

 k m n,mean xX X 1 k Cv    (8-2) 
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 k m n,low xX X 1 k Cv    (8-3) 

 
if Xk is the characteristic value; Xm is the mean value; Cvx is the coefficient of variation; and kn,mean 
and kn,low are statistical coefficients taking into account the sampling, the number of test results, the 
value affecting the occurrence of the limit state (the mean value or the lowest value, respectively), and 
the statistical level of confidence required for the assessed characteristic value, expressed by a 
considered t factor of the Student’s distribution; Equation (8-2) is referenced as case Cv know mean 
and Equation (8-3) is referenced as case Cv known low. 

From Table 8-5 and corresponding Figure 8-2 it is possible to conclude that a resistance partial 
factor between 1.4 and 1.5 stands for a mean reliability index which satisfies the 3.8 target reliability 
index, noted that 1.4 is the resistance partial factor generally considered on Eurocode 7, 
approximately derived from a characteristic safety factor of 2.0. Total satisfactory performance for the 
combinatory group is only attained for a resistance partial factor of 2.2 and a characteristic safety 
factor of 3.0. It is demonstrated that under the high variability on the case Cv known mean, 
satisfactory performance is not attained in most part of the resistance partial factor interval. 

From Table 8-6 and corresponding Figure 8-3 it is possible to conclude that total satisfactory 
performance for the combinatory group is attained in every situation for each resistance partial factor 
from a mean reliability index of about 5.0 to 6.0 and a characteristic safety factor of about 1.0 to 2.0. 
Therefore, the characteristic safety factor does not adequately reflect the actual design safety. It is 
further noted that the estimation of characteristic values is a determinant issue when analysing 
differences in geotechnical design, as the foundation width B [m] is variable from about 1.0 to 3.5 
when considered the case Cv known low. 
 

Table 8-5.Statistics for the foundation width B [m] and the reliability index β on case Cv known 
mean. 

γR Fsk 
Case Cv known mean on nine Cv combinations, see forthcoming graphs 

Interval B [m] µ B [m] Cv B Interval β µ β Cv β 

1.0 1.3780 [0.8348,1.1831] 0.9983 0.1094 [2.0113,3.3198] 2.5115 0.1921 

1.1 1.5158 [0.9042,1.2757] 1.0788 0.1083 [2.2150,3.7870] 2.8216 0.2033 

1.2 1.6536 [0.9718,1.3655] 1.1571 0.1073 [2.4038,4.2174] 3.1092 0.2116 

1.3 1.7914 [1.0379,1.4527] 1.2333 0.1063 [2.5799,4.6176] 3.3775 0.2179 

1.4 1.9292 [1.1024,1.5376] 1.3077 0.1055 [2.7449,4.9903] 3.6288 0.2229 

1.5 2.0670 [1.1656,1.6203] 1.3803 0.1046 [2.9003,5.3403] 3.8655 0.2270 

1.6 2.2048 [1.2274,1.7011] 1.4512 0.1039 [3.0473,5.6691] 4.0890 0.2303 

1.7 2.3426 [1.2881,1.7799] 1.5207 0.1032 [3.1865,5.9804] 4.3009 0.2331 

1.8 2.4804 [1.3475,1.8570] 1.5886 0.1026 [3.3189,6.2745] 4.5020 0.2353 

1.9 2.6182 [1.4059,1.9325] 1.6553 0.1020 [3.4452,6.5544] 4.6938 0.2373 

2.0 2.7560 [1.4632,2.0064] 1.7206 0.1015 [3.5659,6.8207] 4.8768 0.2390 

2.1 2.8938 [1.5195,2.0789] 1.7848 0.1009 [3.6815,7.0747] 5.0519 0.2404 

2.2 3.0316 [1.5749,2.1501] 1.8478 0.1005 [3.7925,7.3178] 5.2198 0.2417 

EC 7 DA.2* results for the determination of the foundation width B [m] statistics. 
FORM results for the determination of the reliability index β statistics. 
γR-resistance partial factor. 
Fsk-characteristic safety factor. 
µ-mean value. 
Cv-coefficient of variation. 
Fsk=γE·γR, γE=effect actions partial factor=1.3780. 
 

Table 8-5 and Table 8-6 summarise the calculation interval for the foundation width B [m] and 
the reliability index β by the application of the first order reliability method (FORM). On this 
parametric study it is investigated the influence of variability of soil shear strength parameters on 
resistance partial factor design for the various cases considered, which include lower and higher 
variability scenarios as showed on Figure 8-2 and Figure 8-3. A cautious estimate of the mean value 
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or of the lowest value affecting the occurrence of the limit state is considered for the determination of 
characteristic values for each geotechnical parameter, respectively case Cv known mean on Table 8-5 
and Figure 8-2 or case Cv known low on Table 8-6 and Figure 8-3. 
 

 
 
Figure 8-2.Influence of variability of soil shear strength parameters on resistance partial factor design 

for the cases Cv known mean 0.40&0.05 and 0.40&0.10 and 0.40&0.15. 
 
Table 8-6.Statistics for the foundation width B [m] and the reliability index β on case Cv known low. 

γR Fsk 
Case Cv known low on nine Cv combinations, see forthcoming graphs 

Interval B [m] µ B [m] Cv B Interval β µ β Cv β 

1.0 1.3780 [1.1019,2.5880] 1.7428 0.2664 [4.0131,5.6175] 4.6624 0.1129 

1.1 1.5158 [1.1898,2.7554] 1.8675 0.2627 [4.3119,6.0149] 4.9956 0.1175 

1.2 1.6536 [1.2752,2.9160] 1.9879 0.2594 [4.5891,6.3809] 5.3031 0.1221 

1.3 1.7914 [1.3582,3.0707] 2.1043 0.2565 [4.8478,6.7204] 5.5885 0.1264 

1.4 1.9292 [1.4392,3.2200] 2.2171 0.2539 [5.0904,7.0366] 5.8549 0.1304 

1.5 2.0670 [1.5181,3.3644] 2.3267 0.2515 [5.3056,7.3331] 6.1047 0.1340 

1.6 2.2048 [1.5952,3.5044] 2.4333 0.2494 [5.4827,7.6118] 6.3398 0.1373 

EC 7 DA.2* results for the determination of the foundation width B [m] statistics. 
FORM results for the determination of the reliability index β statistics. 
γR-resistance partial factor. 
Fsk-characteristic safety factor. 
µ-mean value. 
Cv-coefficient of variation. 
Fsk=γE·γR, γE=effect actions partial factor=1.3780. 
 

Compared the case Cv known mean and the case Cv known low on equal characteristic safety 
factor, it is concluded that a higher foundation width B [m] stands for a higher reliability index. The 
interval derived for the reliability index is as well determined by the shear strength variability. In this 
way, robustness in the context of Eurocode 7 partial factor design is not achieved on a unique 
resistance partial factor. 

Afterwards and considered the Eurocode 7 Design Approach DA.2*, results for the 
determination of the foundation width B [m] statistics are brought together. Regarding safety, a 
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minimum 0.6 foundation width B [m] is considered from the construction industry practice on the 
type of geotechnical engineering structure. Thereafter, FORM results are gathered within the specified 
grid of model cases for the determination of the reliability index statistics. As illustration, Figure 8-4 
represents FORM results in the reliability index three-dimensional joint view to safety assessment for 
a resistance partial factor level of 3.0, considered the interval scenario [0.0,40.0] for cohesion [kN/m2] 
and [25.0,40.0] for friction angle [º] on lower load combination, median case selected among the 
forthcoming cases. 
 

 
 
Figure 8-3.Influence of variability of soil shear strength parameters on resistance partial factor design 

for the cases Cv known low 0.40&0.05 and 0.40&0.10 and 0.40&0.15. 
 

 
 
Figure 8-4.Reliability index three-dimensional joint view to safety assessment for a resistance partial 
factor level of 3.0, considered the interval scenario [0.0, 40.0] for cohesion [kN/m2] and [25.0, 40.0] 

for friction angle [º] on lower load combination. 
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In this sketch it is noted the horizontal position of the 3.8 target reliability level so that it is 
observable a curved surface wherein part is below the 3.8 target reliability level. The lower left corner 
appears as the critical and the lower right corner is shaped due to the minimum 0.6 foundation width 
B [m]. It is further noted that the maximum reliability index corresponds to a lower cohesion and to a 
minimum friction angle characteristic values. Thereby, Figure 8-5 and Figure 8-6 represent FORM 
results for the 3.8 target reliability index ISOLINES, considered the interval scenario [0.0, 40.0] for 
cohesion [kN/m2] and [25.0, 40.0] for friction angle [º]. The individual resistance partial factor is 
detailed in three cases, 2.5 and 3.0 and 3.5, for two load combinations, the higher on a 3.0 incremental 
ratio. The ISOLINES concept is detailed hereafter. 
 

 
 

Figure 8-5.Imprecise probabilistic grid-based approach on variable foundation width [m] for each 
resistance partial factor level of 2.5, 3.0, 3.5, considered the interval scenario [0.0, 40.0] for cohesion 

[kN/m2] and [25.0, 40.0] for friction angle [º] on lower load combination. 
 

 
 

Figure 8-6.Imprecise probabilistic grid-based approach on variable foundation width [m] for each 
resistance partial factor level of 2.5, 3.0, 3.5, considered the interval scenario [0.0, 40.0] for cohesion 

[kN/m2] and [25.0, 40.0] for friction angle [º] on higher load combination. 
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The ISOLINES in Figure 8-5 and Figure 8-6 represent the set of shear strength parameters that is 
capable to satisfy the required 3.8 target reliability index for each resistance partial factor in detail, 
noted that every combination of shear strength parameters on the left of each curve falls on the safe 
side. Thus, whenever a variety of possibilities instead of one clear model are advanced, a grid-based 
analysis may be pursued to identify a relative importance within a grid of model cases in a decision-
making technique which reflects the sensitivity with respect to the load and resistance design. It is 
noted that this particular case study is based on the assumption that every grid element is eligible on 
uniform possibility on weighting. The shear strength parameters on the grid area may be combined 
and weighted for differentiation through the segmentation of sets into new subsets, analysed any 
background information on the ground nature and considered the risk tolerance of the geotechnical 
engineer, as well as any other economic issues related to design feasibility. Complementary 
knowledge may be provided by a number of references on foundation engineering and geotechnical 
site investigation or handbooks of design tables. It is noted that this particular case study is calculated 
for demonstration only for normal variabilities. 

Table 8-7 and Table 8-8 summarise the statistics for the foundation width B [m] and reliability 
index β, respectively on lower and higher load combination. It is noted that the calculation of the 
weighted resistance partial factor is based on the safe cases in every cluster delimited by each curve 
drawn respectively at Figure 8-5 and Figure 8-6, and not on the safe cases for the calculation of the 
safe percentage. Furthermore, Table 8-9 details the resistance partial factor design corresponding to 
the 3.8 target reliability index calculated from MCS results on four cases corresponding to the lower 
and higher load combination on 0.0 cohesion [kN/m2] and 25.0 or 40.0 friction angle [º]. 
 

Table 8-7.Statistics for the foundation width B [m] and reliability index β, considered the interval 
scenario [0.0, 40.0] for cohesion [kN/m2] and [25.0, 40.0] for friction angle [º] on lower load 

combination. 
WγR vs Fsk IγR vs Fsk Interval B [m] Interval β Safe cases Safe percentage [%] 

3.0 vs 4.1340 

2.5 vs 3.4450 [0.6000,3.7821] [2.6055,4.7294] 59/144 ≈40 
3.0 vs 4.1340 [0.6000,4.2263] [2.9966,5.4132] 102/144 ≈70 
3.5 vs 4.8230 [0.6000,4.6364] [3.3363,5.9990] 131/144 ≈90 
4.3 vs 5.9254 [0.6651,5.2377] [3.8023,6.7906] 144/144 ≈100 

EC7 DA.2* results for the determination of the foundation width B [m] statistics. 
FORM results for the determination of the reliability index β statistics. 
WγR-weighted resistance partial factor; IγR-individual resistance partial factor. 
Fsk-characteristic safety factor. 
WγR≈[2.5·59+3.0·43+3.5·29+4.3·13]/[144]≈3.0. 
Fsk=γE·γR, γE=effect actions partial factor=1.3780. 
 

Table 8-8.Statistics for the foundation width B [m] and reliability index β, considered the interval 
scenario [0.0, 40.0] for cohesion [kN/m2] and [25.0, 40.0] for friction angle [º] on higher load 

combination. 
WγR vs Fsk IγR vs Fsk Interval B [m] Interval β Safe cases Safe percentage [%] 

3.2 vs 4.4096 

2.5 vs 3.4450 [1.0726,7.2200] [2.4658,4.4920] 48/144 ≈35 
3.0 vs 4.1340 [1.2469,8.0020] [2.8347,5.1364] 92/144 ≈65 
3.5 vs 4.8230 [1.4127,8.7221] [3.1551,5.6880] 119/144 ≈85 
4.7 vs 6.4766 [1.7825,10.2659] [3.7897,6.7727] 144/144 ≈100 

EC7 DA.2* results for the determination of the foundation width B [m] statistics. 
FORM results for the determination of the reliability index β statistics. 
WγR-weighted resistance partial factor; IγR-individual resistance partial factor. 
Fsk-characteristic safety factor. 
WγR≈[2.5·48+3.0·44+3.5·27+4.7·25]/[144]≈3.2. 
Fsk=γE·γR, γE=effect actions partial factor=1.3780. 
 

Additional FORM constraints to relate interval and probabilistic variables are expendable on 
uncorrelatedness assumption as it is not possible to attain precision on a verifiable basis in the big data 
analysis on the high reliability space. The foundation width B [m] is as well recalculated for the EC7 
DA.2* resistance partial factor level of 1.4 on every case corresponding to the 0.0 cohesion [kN/m2] 
and fuzzy interval scenario [25.0, 40.0] for friction angle [º], see on Figure 8-7 FORM results on 
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lower and higher load combination. Thereafter, the fuzzy reliability calculation evinces now a 10.0 
quasi uniform reliability level. Considered the Eurocode 7 Design Approach DA.2*, results for the 
determination of the foundation width B [m] for the critical case which considers the pair 0.0 cohesion 
[kN/m2] and 40.0 friction angle [º] are determined for resistance partial factors of 1.0, 1.5, 2.0, 2.5, 
3.0, 3.5, 4.0, 4.5, 5.0 on lower and higher load combination. Thereafter, FORM results are gathered 
within the interval scenario [25.0, 40.0] for friction angle [º] for the determination of the reliability 
index statistics. Thereby, Figure 8-8 and Figure 8-9 represent FORM results for the imprecise 
probabilistic fuzzy-based approach wherein the reliability index interval is related to the friction angle 
subsets for every resistance partial factor. On this fuzzy reliability calculation the friction angle is 
considered a deterministic parameter combined with the other uncorrelated probabilistic variables. 
The smooth curved lines at Figure 8-8 and Figure 8-9 denote the friction angle demand to attain the 
indicative reliability marks. They are sketched for every resistance partial factor, so that the 
assignment of the critical case which considers the pair 0.0 cohesion [kN/m2] and 40.0 friction angle 
[º] corresponds to the high reliability space. It is remarked that each line is developed for a unique 
foundation width B [m] design, the closeness of the case 1.0 at Figure 8-8 due to the minimum 0.6 
foundation width B [m]. 
 

Table 8-9.Resistance partial factor design corresponding to the 3.8 target reliability index. 
IγR vs Fsk 

0.0 cohesion [kN/m2] and 25.0 friction angle [º] 0.0 cohesion [kN/m2] and 40.0 friction angle [º] 
Lower load combination Higher load combination Lower load combination Higher load combination 

2.1514 vs 2.9646 2.3423 vs 3.2277 4.2985 vs 5.9233 4.7245 vs 6.5104 
MCS results from 5e6 simulations. 
IγR-individual resistance partial factor. 
Fsk-characteristic safety factor. 
Fsk=γE·γR, γE=effect actions partial factor=1.3780. 
 

 
 

Figure 8-7.Imprecise probabilistic fuzzy-based approach on variable foundation width [m] for the 
EC7 DA.2* resistance partial factor level of 1.4, considered the interval scenario [25.0, 40.0] for 

friction angle [º] on lower and higher load combination. 
 

The limit state imprecise probabilistic analysis is then interpreted altogether with a limit state 
imprecise interval analysis for bearing capacity. Thus, the limit state charts to safety assessment are 
separately sketched for the cases cohesion and friction angle interval scenario wherein the random 
variables are bounded on different levels of probability, see Figure 8-10 for the case friction angle 
interval scenario. Distinct levels of credibility are used to sketch the lines which express the limit state 
bounds. It is possible to search for a credibility level which ensures no failure regardless of the 
parameter value on the horizontal axis and conversely, it is possible to find the threshold parameter 
which ensures no failure for a given credibility level and then to proceed with proper ground 
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investigation and testing or improvement, see in the chart the circle crossing the zero limit state 
boundary and the 0.9900 credibility level line. In decision making, this valuable approach may be 
extended by numerical analysis for high dimensional cases with several indecision variables in 
simultaneous, see Figure 8-11 for the limit state three-dimensional joint view to safety assessment 
considered simultaneously the interval variables cohesion and friction angle. In the multivariate case 
the considered probability level prescribes a credible region in the hyperspace, then the imprecise 
interval analysis complies with a mixed set of probabilistic and nonprobabilistic interval models 
wherein different bounding measures may be applied in order to find the limit state lower and upper 
bounds in different scenarios. 
 

 
 

Figure 8-8.Imprecise probabilistic fuzzy-based approach on constant foundation width [m] for each 
resistance partial factor level of 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, considered the interval 

scenario [25.0, 40.0] for friction angle [º] on lower load combination. 
 

 
 

Figure 8-9.Imprecise probabilistic fuzzy-based approach on constant foundation width [m] for each 
resistance partial factor level of 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, considered the interval 

scenario [25.0, 40.0] for friction angle [º] on higher load combination. 
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Figure 8-10.Limit state chart to safety assessment for the case friction angle interval scenario. 
 

 
 

Figure 8-11.Limit state three-dimensional joint view to safety assessment for a 0.9900 probability 
level. 
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On this framework, Figure 8-11 displays the limit state three-dimensional joint view to safety 
assessment for a 0.9900 probability level corresponding to a satisfactory level of reliability. A three-
dimensional representation of the zero limit state reference surface is crossed in one corner by the 
limit state lower bound surface constructed from a joint assumption of the values of the interval 
variables cohesion and friction angle. According to the results on Figure 8-11, unsafe coordinates are 
limited to a cohesion parameter on a value between 7.0 kN/m2 and 10.5 kN/m2 or to a friction angle 
parameter on a value between 29.0 º and 30.0 º, considered the two worst combination cases 
corresponding to a friction angle of 25.0 º or to a cohesion of 0.0 kN/m2, respectively. On this 
particular case study it is clearly shown that small variations in the friction angle input are very 
influential in that the median and the imprecise lower bound of probability correspond to a boundless 
immeasurable reliability. 
 
8.4 SUMMARY 
 
Considered the underlying motivation on the endeavour for safety, approaches to robust design are 
nowadays discussed on the calculation of resistance factors capable to maintain a more uniform 
reliability level over a range of design parameters. As information is not certain but rather imprecise, 
a sensitivity analysis may be pursued through probabilistic grid-based and fuzzy-based approaches on 
multiple intervals. The imprecise probabilistic analysis is then a supplementary element which 
enriches the variety of models to be combined with the traditional overview in improved adaptability. 
The admissibility of imprecision in beliefs is the primary difference in motivation between imprecise 
probabilistic and robust Bayesian approaches, beliefs are imprecise or there exists a prior that captures 
the true beliefs, although it may be hard to identify this distribution. Imprecise probabilistic 
approaches are robust whenever insensitive to small deviations from the assumed probabilistic 
models. 

From the imprecise probabilistic grid-based analysis applied to this particular case study on 
lower and higher load combination, a safe percentage between 70 and 75 is attained whenever 
considered a weighted resistance partial factor calculated on uniform possibility. Thus, a meaningful 
interpretation on a high dimensional space is based on the joint analysis of multiple cases instead of a 
lower and upper probabilistic evaluation, noted that the reliability index is variable within a limited 
expectation. 

From the imprecise probabilistic fuzzy-based analysis applied to this particular case study on 
lower and higher load combination, the safety concept emerges realigned to a new vision on a quasi-
uniform reliability level highly attained along the friction angle interval, whenever the shear strength 
parameters are truly assigned. Thus, it is evinced the capability to approach a uniform reliability level 
on the parametric range of interest, considered the extension of geotechnical robustness to partial 
factor design. 

One motivation for adopting imprecise probabilistic approaches consists on the safety evaluation 
in the scope of the shear strength parametric change by weathering on real world problems such as the 
probabilistic interpretation of mine pillar capacity. On the imprecise probabilistic approaches multiple 
resistance partial factors may be clearly related to the determination of characteristic values. 
Expressed simply by intervals, geotechnical parameters on scarce probabilistic information are 
assigned based on experience. A meaningful interpretation on a high dimensional space is based on 
the joint analysis of multiple cases instead of a lower and upper probabilistic evaluation. The limit 
state imprecise probabilistic analysis may be interpreted altogether with a limit state imprecise 
interval analysis. This sensitivity analysis may provide meaningful results for safety-based decision in 
ground investigation and testing or improvement and the partial factor design may be discussed on the 
basis of distinct levels of credibility. 
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9.1 INTRODUCTION 
 
The purpose of the Working Group was to examine how sufficient robustness can be ensured in 
geotechnical designs, using reliability analysis or other safety formats. The members of the group first 
set out to define the term “robustness” in a relevant way and then exchanged emails and papers to 
develop an understanding of how it can be provided in geotechnical design and codes of practice. 

Two distinctly different types of robustness are considered in this chapter. Therefore, following 
the section on Definitions below, the chapter is divided into two parts, each considering one definition 
of robustness. 

 

9.2 DEFINITIONS 
 

9.2.1 Introduction 
 
The term “robustness” can take several different meanings. The issue of concern to designers and to 
codes of practice is the robustness of a civil engineering construction, usually in its final form but also 
during the process of construction. This is therefore the subject of this chapter. 

Two principal types of robustness have been identified by the group: 
(1) The ability of the final design to accommodate events and actions that were not foreseen or 

consciously included in design. This is considered in Part A of the chapter below. 
(2) The sensitivity of the final design to variations of the known parameters within their 

anticipated range of uncertainty. This is considered in Part B of the chapter below. 
 

9.2.2 Accommodating what is unforeseen 
 
This definition of robustness relates, in particular, to the ability of the construction to withstand 
without failure events and actions that were not foreseen or consciously included in design. Although 
the precise nature of such actions may be unknown to the designer, their magnitude can be considered: 
society expects that a construction will be able to withstand moderate unforeseen events and actions, 
but probably not extremely severe ones. A design that produces such a construction can be termed a 
“robust design”. 

A concise definition is given by ISO 2394, which equates robustness to “damage insensitivity”. 
This will be taken to be the basic definition used in Part A of this report: 

Ability of a structure to withstand adverse and unforeseen events (like fire, explosion, and 
impact) or consequences of human errors without being damaged to an extent 
disproportionate to the original cause (ISO 2394:2014, 2.1.46). 

An alternative definition, with the same basic meaning, could help designers to understand the 
degree of robustness required: 

Ability of a structure to withstand adverse events that are unforeseen but of a magnitude such 
that society will expect that our designs can accommodate them, having tolerance against 
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mistakes within the design process and during construction. 
 

9.2.3 Local damage and progressive failure 
 

The term robustness is often applied to a complete structure rather than to an individual element of it. 
For example, CEN (2016) Practical definition of structural robustness vDraft, gives a definition 

of structural robustness: 
Structural robustness is an attribute of a structural concept, which characterizes its ability to 
limit the follow-up indirect consequences caused by the direct damages (component damages 
and failures) associated with identifiable or unspecified hazard events (which include 
deviations from original design assumptions and human errors), to a level that is not 
disproportionate when compared to the direct consequences these events cause in isolation. 

Robustness is often linked to the ability to prevent progressive failure, which could lead to 
damage disproportionate to cause (eg COST (2011) Structural robustness design for practising 
engineers). This is probably consistent with strict limit state definitions in which ultimate limit state 
(ULS) is a state of danger, but as a practical design expedient ULS is often considered as only 
localised failure, not necessarily dangerous in itself. EN 1990 3.3(3) is relevant to this: “States prior to 
structural collapse, which, for simplicity, are considered in place of the collapse itself, may be treated 
as ultimate limit states.” 

Val (2006), discussing robustness of framed structures, provides a definition similar to that of 
ISO 2394, and then offers as an alternative: 

The robustness of a structure can be defined as ability of the structure to withstand local 
damage without disproportionate collapse, with an appropriate level of reliability. 

 

9.2.4 Resilience 
 
Robustness can be distinguished from “resilience”, which refers to the ability of a structure to be 
recovered after it has failed. On the other hand, a complete structure, or a system such as a metro 
system, might be considered robust if its members are all resilient, so that local failures can be 
repaired without failing the complete system (Huang et al 2016). 
 

9.3 PART A–ACCOMMODATING EVENTS AND ACTIONS THAT WERE NOT 

FORESEEN IN DESIGN 
 

9.3.1 Events and actions relevant to robust design 
 
In most design processes, “lead variables” are identified and the possibility that they might adopt 
extreme values, or occur in adverse combinations, is considered in some way. Lead variables are 
usually actions (loads), material strengths and component resistances. However, most designs are also 
affected by a large number of “secondary variables”, which the design is expected to accommodate.  

Robustness relates to the ability of a construction to withstand events and actions that were not 
foreseen or consciously included in design, in effect because they were considered “secondary”. 
These have to be judged in their context. For example, in a building structure if a heating engineer 
puts a 150mm hole through a wall, it would be unacceptable for the wall to fail; however, if the same 
hole were put through a 250mm column the heating engineer, not the column designer, could be liable 
for the failure that ensued. 

The definition of robustness given in ISO2394, in common with EN1990, mentions as examples 
fire, explosion, impact and human errors. Human errors occur both in design and construction, the 
latter often resulting in geometric inaccuracies in the construction. In a geotechnical context, other 
secondary variables could include sedimentation or erosion around a structure in water, excavation of 
small trenches etc., or of the ground above a structure relying on the weight of ground, disturbance 
caused by burrowing animals, unidentified loading above retaining walls, and vandalism of various 
kinds.   

If these events are very large, it might be judged that the designer should have allowed for them, 
or they might lead to successful insurance claims or prosecution of the perpetrators. However, where 
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they are only moderate in magnitude, clients and society reasonably expect that they will not cause 
significant problems to constructions. In this respect, although the events themselves are unforeseen at 
the time of design, the magnitude that a design must be able to accommodate is understood, at least 
roughly. For example, whilst all structures may be expected to have reasonable robustness against 
vandalism, ability to resist more severe acts of terrorism is only required in the specifications of more 
exceptional structures. 

In reliability work, the term “black swan” is used to describe something that was unforeseeable 
and that has an extreme impact - https://en.wikipedia.org/wiki/Black_swan_theory . The implication is 
that nobody could have prepared for the disaster that was caused, and society would accept that no 
designer could be blamed. Robustness relates to events that are also unforeseen but are of smaller 
magnitude, such that society will expect that robust designs can accommodate them. It might be 
helpful to think of these as grey swans – signets – they are neither black nor white and somewhat 
smaller. 
 

9.3.2 Ensuring robustness in various design formats 
 
9.3.2.1 Prescriptive measures relevant to robustness 
Studies of robustness in structural design highlight two important prescriptive measures: provision of 
redundancy or “alternative paths”, and “tying the structure together”. In the “alternative path” method 
individual members are removed in the analysis to prove robustness of the structure. Val (2006) notes:  

It is stressed that the removal of a single vertical load bearing element "is not intended to 
reproduce or replicate any specific abnormal load or assault on the structure". Rather, member 
removal is simply used as a "load initiator" and serves as means to introduce redundancy and 
resiliency into the structure. 

As a geotechnical example of this, Simpson et al (2008) argued that the Nicoll Highway collapse 
in Singapore probably would not have occurred, despite human errors, if the design had included a 
check for loss of a single strut in the excavation; this was a requirement in the Singapore code at the 
time of design. 

As with other issues related to safe design, checking, review and supervision of design and 
construction are extremely valuable. In some cases, these processes may suggest that some 
“unforeseen” events and actions should be classified as “foreseeable” and consciously included in the 
design process. 
 

9.3.2.2 Use of partial factor methods 
In this chapter, the term “partial factor methods” will be taken to include all safety formats in which 
factors of safety are spread among several variables. The variables may include actions (loads), effects 
of actions such as internal forces derived in calculations, material strengths, and resistances of 
structural components (such as bending capacity) or of bodies of ground (such as bearing resistance). 
Thus all the “Design Approaches” of Eurocode 7 and all LRFD formats are included as “partial factor 
methods”. Some of the partial factors may be “model factors”. 

Many studies have been carried out to derive values for partial factors using reliability analysis 
(eg Foye et al 2006, Schweckendiek et al 2012). However, in practice, almost all values used in 
modern codes of practice have been derived by calibration against previous experience of successful 
design. Sometimes, further reliability studies have been used to provide additional justification. The 
disadvantage of calibration processes is that the “successful” designs demonstrated adequate success 
in terms of both ultimate and serviceability limit states and also with regard to robustness. So it is 
difficult, if not impossible, to determine which of these criteria actually required the factors used. 
However, calibration against existing experience shows that the factors adopted have provided, at 
least, a level of robustness that has been found to be adequate. 

EC7 notes one particular aspect of robustness, without using that word: the accommodation of 
small geometric variations. For these it says: 

The partial action and material factors (F and M) include an allowance for minor variations in 
geometrical data and, in such cases, no further safety margin on the geometrical data should be 
required. (EC7, 2.4.6.3(1)) 

CEN (2014) Robustness in Eurocodes notes that: “The national partial safety factors are also 
expected to cover a (part of)” the effects of errors in design and execution. (Section 2, page 4). 
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It may be concluded, therefore, that the use of partial factor methods with values derived by 
calibration against existing successful experience, is a valid approach to provision of adequate 
robustness. Their values are roughly aligned with typical coefficients of variation of the lead 
parameters. As will be noted below, this is probably an optimal strategy. 
 

9.3.2.3 Direct use of reliability methods 
The potential benefit of reliability methods over partial factor methods is that they can take account 
directly of the real uncertainty of the lead variables, for which data may be available. This would 
allow the safety of designs to be gauged by a reliability index, β, which, in principle, is related to the 
probability of failure, intended to be very low. Reliability methods are generally more complicated to 
implement than partial factor methods, so designers and codes of practice are only likely to adopt 
them if they are shown to have clear advantages. 

The Working Group has not been able to suggest practicable methods of accommodating 
robustness (type (a) in 2.1, as discussed in 2.2) in reliability based design. It is possible that a major 
study of civil engineering failures, of large and small magnitude, might provide a database that could 
be used as an input to reliability studies. This would give, for example, objective data on the 
occurrence and significance of human errors in design. However, an immediate problem arises that in 
many cases the detailed analysis of failures is confidential to legal proceedings, so accumulation of 
reliable data would be very difficult. 

It might be possible to calibrate reliability methods against past experience in the same way that 
partial factor methods have been calibrated. This could mean that values of the reliability index β, 
which relates to the probability of the lead variables dominating the design, could be chosen so as to 
reproduce previous successful designs, which are considered to have sufficient robustness. 
Unfortunately, this would lose the logical connection between reliability index, probability of failure 
and the actual uncertainty of the lead variables.  

It was noted above that while actions and events for which robustness is needed are not 
identified at the time of design, their magnitude is roughly determined by what is acceptable to society. 
Because they are independent of the lead variables, they are also independent of the range of 
uncertainty of those variables. This means that the magnitudes of unforeseen actions and events, for 
which robustness is required, cannot be measured on the same scale as the uncertainties of the lead 
variables. Hence, simply designing for larger β might not achieve what is required. 

Consider, for example, a situation in which the coefficients of variation of the lead variables are 
considered to be very small. In that case, a large value for β could be achieved with little change to the 
design, and no significant robustness to meet unforeseen actions and events. In this respect, the use of 
partial factors with values roughly aligned to typical coefficients of variation of the lead variables, but 
not tuned specifically for individual designs, appears to be advantageous. This situation commonly 
occurs, for example, in the design of water reservoirs for with the maximum loading, when the 
reservoir is full, is expected to occur but cannot be exceeded. A simple reliability approach could lead 
to the conclusion, in effect, that no margin of safety need be added to the forces calculated form the 
water load, but this would give no allowance for robustness. Evolution Group 9 of Eurocode 7, 
reporting on design for water pressures, therefore concluded that partial factors should be applied to 
the action effects from water pressures calculated in structures; treatment of the forces and stresses in 
the ground caused by water pressures depends on how the ground strength or resistance is being 
factored. 
 

9.3.2.4 Use of reliability methods to determine partial factors for inclusion in standards 
Reliability methods can be used as a means of informing the choice of values for partial safety factors 
in standards. This avoids the need for skill in reliability theory on the part of designers. An example 
related to partial factors used in the design of flood defences in the Netherlands is discussed by 
Schweckendiek et al (2012). 

The process of a rigorous reliability exercise as part of the design development of such major 
structures, requiring careful discussion among experts of several disciplines, is considered to have 
benefits in raising issues that might normally be overlooked and encouraging proper investigation of 
the parameters controlling the design. It could be that this process will, in itself, improve robustness 
against “unforeseen” events and actions by forcing more of them to be explicitly foreseen and 
accommodated in the design. This is usually to be expected when designs are critically reviewed by a 
multi-disciplinary team with a high level of expertise. One possible danger that must be avoided is 
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that the process becomes so dominated by probability expertise that clear thinking about the physical 
processes involved gets crowded out. 

It seems likely that studies of this type will provide valuable insights to the process of setting 
values for partial factors. In relation to robustness, a key issue is to ensure that the eventual designs 
are able to accommodate, to a reasonable extent, events and actions beyond those normally included 
in conventional designs. 
 

9.3.2.5 Direct assessment of design values 
If design values are assessed directly, such as by using “worst credible values”, attention could be 
concentrated entirely on the lead variables, as tends to happen in reliability analyses, making no 
provision for robustness. Alternatively, directly assessed design values could be consciously chosen so 
as to make an allowance for robustness. Such an approach would have no calibration to past 
successful design, and it would be very difficult to standardise. 
 

9.3.3 Concluding remarks for Part A 
 
Part A of this chapter has concentrated on “type (a)” robustness identified in 2.1: the ability of the 
final design to accommodate events and actions that were not foreseen or consciously included in 
design. In Part B, an alternative form of robustness is discussed (type(b)): the sensitivity of the final 
design to variations of the known parameters within their anticipated range of uncertainty. 

For type (a) robustness it is noted that the margins of safety required may relate more to the 
magnitudes of the lead variables, which govern the overall geometry and strength of the structure, 
than to their uncertainties. In this case, simply reducing the target probability of failure or increasing 
the reliability index β calculated for the lead variables may not provide the robustness required. A 
partial factor approach may more readily accommodate this requirement. Similarly, carrying out 
design for the “worst credible” values of the lead variables may not provide the required robustness. 

For large projects, processes that involve critical reviews of designs or proposed design 
standards by multi-disciplinary teams of experts are likely to identify a larger range of situations and 
variables for which the designs should be checked. They will therefore increase robustness by 
transferring some events and actions from the category of “unforeseen” (and therefore not explicitly 
designed for) to “foreseen”. Rigorous study using reliability schemes and processes will probably be 
helpful in this respect, provided the concentration on reliability expertise is not allowed to eclipse the 
other skills needed in the critical review. 
 

9.3.4 References for Part A 
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9.4 PART B–ACCOMMODATING VARIATIONS OF THE KNOWN PARAMETERS 

WITHIN THEIR ANTICIPATED RANGE OF UNCERTAINTY 
 
Part B of this report was drafted by Hongwei Huang, C. Hsein Juang, and Wenping Gong 
 

9.4.1 Introduction 
 
This report represents a short review on the robust geotechnical design (RGD) proposed by Dr. Juang 
and his colleagues. In the context RGD, an optimal design is seeked with respect to design robustness 
and cost efficiency, while satisfying the safety requirements; and thus, RGD is generally implemented 
as multi-objective optimization problem. The safety requirements, in RGD, may be evaluated with 
either deterministic (i.e., factor of safety-based) or probabilistic (i.e., reliability-based) approach based 
on the characterization of the uncertain input parameters, this is consistent with the traditional 
geotechnical design approaches. A design, in RGD, is considered robust (i.e., having high degree of 
design robustness) if the system response of concern is insensitive to, or robust against, the variation 
in the uncertain input parameters. And, the optimal design, in RGD, is seeked through carefully 
adjusting the “design parameters” (i.e., parameters that can be easily controlled by the engineer, such 
as the geometry) without reducing the uncertainty in the “noise factors” (i.e., uncertain input 
parameters that could not be characterized accurately). In this report, two main elements in RGD, 
namely, robustness measure and multi-objective optimization, are discussed. Next, the procedures for 
implementing the RGD are outlined. Finally, the RGD is illustrated with cases study, including braced 
excavation, shield tunnel, and retaining wall; the results of which demonstrate the versatility and 
effectiveness of the RGD. 
 

9.4.2 Elements in Robust Geotechnical Design 
 
Two fundamental elements in RGD, in terms of the robustness measure and the multi-objective 
optimization, are detailed in this section. 
 

9.4.2.1 Robustness measure 
According to the level of characterization of the uncertain input parameters (or noise factors), three 
levels of robustness measure could be employed in RGD: (1) site-specific data is quite limited and 
only the nominal values of the noise factors could be approximately estimated, the gradient-based 
sensitivity index (SI) (Gong et al. 2016b) could be employed; (2) site-specific data is limited and the 
upper bounds and lower bounds of the noise factors could be characterized, the fuzzy set-based 
signal-to-noise ratio (SNR) (Gong et al. 2014a&2015) could be employed; and (3) more site-specific 
data availability is achieved and the probability distributions of the noise factors could be 
characterized, however, the statistical information of the distributions (e.g., coefficient of variation) 
cannot be calibrated accurately, the reliability-based feasibility index (ββ) (Juang et al. 2012&2013; 
Juang and Wang 2013; Khoshnevisan et al. 2014; Huang et al. 2014a) could be adopted.  
 

Gradient-based sensitivity index 
In reference to Figure 9-1, two different designs (referred to herein as d1 and d2) are compared. Here, 
d2 is seen more robust than d1 against the variation of noise factors θ, as the gradient of the system 
response to the noise factors is lower in the case of d2 than in d1. As such, the design robustness can 
be effectively evaluated using the gradient of the system response to the noise factors (Gong et al. 
2014b). Here, the gradient of the system response to the noise factors, g, at a check point of noise 
factors, θ, can be expressed as follows: 
 

= '
1 2 n= ' = ' = '

g( , ) g( , ) g( , )
g = , , ,

θ θ θ

          
θ θ

θ θ θ θ θ θ

d θ d θ d θ
                       (9-1) 
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where g(d, θ) represents the system performance of concern, which is a function of the design 
parameters (d) and noise factors (θ); and n represents the number of noise factors. In situations where 
only the nominal values of the noise factors, denoted as θn, could be characterized and available to the 
engineer, the nominal values of noise factors can be reasonably assigned as the checkpoint in Eq. 
(9-1): θ'=θn. 
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(a) Sensitive design    (b) Robust design  

Figure 9-1. Illustration of the sensitivity of the system response to noise factors (Gong et al. 2014b) 
 

While the gradient g, defined in Eq. (9-1), is shown as an effective indicator of the design 
robustness, two problems need to be resolved before the robust design optimization could be 
implemented. First, the gradient is an n-dimensional vector; as the units of noise factors are different, 
the mathematical operation of this vector could be a problem. Second, the gradient is a vector rather 
than a scalar; it is not as convenient and effective as a scalar to use for screening candidate designs in 
the design pool. 

To solve the first problem, each partial derivative in the gradient vector ∂g(d, θ)/∂θi for θ=θ' is 
multiplied by a scaling factor of θi' so that the effect of the units of noise factors on the design 
robustness can be eliminated. Then, the gradient vector shown in Eq. (9-1) is re-written as follows, 
which is defined herein as the normalized gradient vector (J): 

 

1 2 n

1 2 n= ' = ' = '

θ ' g( , ) θ ' g( , ) θ ' g( , )
= , , ,

θ θ θ

    
     θ θ θ θ θ θ

d θ d θ d θ
J                       (9-2) 

 
Note that a noise factor that exhibits higher variability could contribute more to the design robustness. 
Thus, a weighting factor, which indicates the contribution of the noise factor to the robustness, might 
be adopted in formulation of the normalized gradient vector (J), which is detailed in Gong et al. 
(2016a). To solve the second problem, the Euclidean norm of the normalized gradient vector, which 
signals the length of the normalized gradient vector (J), is adopted and defined herein as the 
sensitivity index (SI). 
 

SI= JJ                                                             (9-3) 

 
The sensitivity index (SI) shown in Eq. (9-3) yields a single value representation of the normalized 
gradient vector. As can be seen, a higher SI value signals lower design robustness, as it indicates a 
greater variation of the system response in the face of the uncertainty in the noise factors. 
 

Fuzzy set-based signal-to-noise ratio 
A fuzzy set is a set of ordered pairs, [, ()], where a member  belongs to the set with a certain 
confidence, called membership grade, (). These ordered pairs collectively define a membership 
function that specifies a membership grade for each member. Note that although the membership 
function is not a probability density function (PDF), a membership grade does give a degree of 
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confidence that a member  belongs to this set. If the highest membership grade in a fuzzy set is 
normalized to 1 and the shape of the membership function is unimodal, this fuzzy set becomes a fuzzy 
number. For a geotechnical parameter with known upper bound and lower bound, the membership 
function could be conveniently constructed by setting the membership grade at  = upper bound or 
upper bound to 0, while the membership grade at  = the average of the upper bound and the upper 
bound to 1, as shown in Figure 9-2(a). As such, the uncertain input parameters are modelled with 
triangular fuzzy numbers (i.e., the fuzzy numbers with a triangular shape membership function). Of 
course, other membership function, such as trapezoidal shape, may be used.  

For a geotechnical system with fuzzy input data, the uncertainty propagation may be studied with 
vertex method (Dong and Wong 1987). In the context of vertex method, the corresponding interval of 
output, in terms of gai

- and gai
+, for the αi-cut level of input fuzzy data (see Figure 9-2b) is able to be 

obtained through 2n deterministic analysis, where n represents the number of fuzzy input data. After 
finishing the analysis of all α-cut levels, the final fuzzy output could be easily constructed, which 
represents the final outcomes of the uncertainty propagation through the solution model. Detailed 
information of the system performance could be provided from which. For example, the mean and 
standard deviation of the system performance g(d, θ), denoted as E[g] and [g], respectively, can 
readily be derived from the fuzzy out shown in Figure 9-2(b), using the formulation in Gong et al. 
(2014a&2015). Then, the signal-to-noise ratio (SNR), defined below, is constructed to measure the 
design robustness (Phadke 1989). 
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Here, a higher SNR signals lower variability of the system response, and thus higher design 
robustness. 
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(a) -cut interval of a fuzzy input number   (b) Fuzzy output from vertex method 

Figure 9-2. Geotechnical analysis with fuzzy input data. 
 

Reliability-based feasibility index 
Note that although the probabilistic distributions of the noise factors could be determined, the 
statistical (e.g., coefficient of variation) of the noise factors could not be characterized with certainty 
because of the limited availability of site-specific data. However, the failure probability estimate 
obtained from the probabilistic approach is often greatly dependent upon the adopted statistical 
information of the uncertain input parameters. In consideration of the uncertainty in the statistical 
characterization of the noise factors, the failure probability of a geotechnical system may not be able 
to be accurately derived and which will be uncertain. In such a circumstance, the variation of the 
failure probability, which could arise from the uncertainty in the statistical characterization of the 
noise factors, needs to be estimated and minimized in the context of RGD. That is to say, the variation 
of the failure probability may be adopted as the robustness measure (Juang et al. 2012&2013). A 
smaller variation of the failure probability signals lower variability of the system response (i.e., failure 
probability in the context of the probabilistic approach), and thus higher design robustness. It is noted 
that the target failure probability might be different for different geotechnical system and the 
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magnitude of the variation of the failure probability could vary in a significant range. Thus, the 
reliability-based feasibility index (ββ), defined below, and could be employed (Juang et al. 
2012&2013; Huang et al. 2014a). 
 

2fT
fstd fmean

fmean
β

2
fstd fmean

P
ln 1+(P P )

P
β =

ln 1+( P P )

 
 
 

  
                                             (9-4) 

 
where PfT represents the target failure probability; and, Pfmean and Pfstd represent the mean and standard 
deviation of the failure probability. As can be seen in Eq. (9-5), the failure probability is assumed to 
be lognormally distributed; here, the feasibility index (ββ) can be interpreted as the feasibility 
probability of the geotechnical system that the target failure probability is stratified: 
 

 β f fΤΦ β =Pr[P <P ]                                                          (9-5) 

 
where () represents the cumulative distribution of the standard normal variable, and Pr[Pf < PfT] 
represents that the target failure probability of this geotechnical system could be stratified in the face 
of the uncertainty in the statistical characterization of the uncertain input parameters. 

For a given set of statistics of the uncertain input parameters, the failure probability (Pf) of the 
geotechnical system can readily be estimated with the probabilistic methods such as first order 
reliability method (FORM) (Low and Tang 2007), Monte Carlo simulation (MCS), and point estimate 
method (PEM) (Zhao and Ono 2000). In consideration of the uncertainty in the statistical 
characterization of the noise factors, the two-loop probabilistic analysis should be conducted. The 
inner loop is employed to estimate the failure probability for a given set of statistics of the noise 
factors, this is similar to the existing probabilistic analysis. The second loop is employed to derive the 
mean and standard deviation of the failure probability that arise from the uncertainty in the statistics 
of the noise factors. To this end, the PEM-FORM (Juang et al. 2013), PEM-MCS, and weighted MCS 
(Peng et al. 2016) may be employed. 
 

9.4.2.2 Multi-objective optimization 
The essence of RGD is to seek an optimal design with respect to design robustness and cost, while 
satisfying the safety requirements. Once the system response of concern is chosen, and the design 
robustness, cost, and safety are evaluated, the optimal design could be obtained through a 
multi-objective optimization formulated as follows: 
 

satisfying 

Find:           design parameters 

Subject to:   design space 

                    safety 
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                                     (9-6) 

 
Based on the level of characterization of the uncertain input parameters, the safety requirements 

may be evaluated using either the deterministic (i.e., factor of safety-based) or probabilistic (i.e., 
reliability-based) approach; similarly, the design robustness can be evaluated using the either the 
gradient-based sensitivity index (SI), fuzzy set-based signal-to-noise ratio (SNR), or reliability-based 
feasibility index (ββ). 

In reference to the optimization setting shown in Eq. (9-7), a single best optimal design is 
generally unattainable since these two objectives (i.e. robustness and cost) are conflicting. The 
multi-objective optimization in this scenario yields a set of “non-dominated” designs, the collection of 
all these non-dominated designs is known as Pareto front (Deb et al. 2002). Among all the designs on 
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the Pareto front, none is superior or inferior to others on the Pareto front with respect to both 
objectives, but they are all superior to the designs in the feasible domain. Figure 9-3 shows a 
conceptual sketch of Pareto front in a bi-objective optimization problem. Note that the utopia point, 
shown in Figure 9-3, is an unattainable design, the concept of which is discussed later. 
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Figure 9-3. Conceptual sketch of Pareto front and knee point in a bi-objective optimization 

 
The Pareto front in Figure 9-3 could be easily obtained with the multi-objective optimization 

algorithms such as “Non-dominated Sorting Genetic Algorithm” version II (NSGA-II) developed by 
Deb et al. (2002). The derived Pareto front is problem-specific, which could be employed as a design 
aid to assist in making an informed design decision. For example, at a preferred (pre-specified) cost 
level, the design with the highest robustness among all points on the Pareto front can be taken as the 
final design. On the other hand, at a pre-specified robustness level, the design with the least cost 
among all points on the Pareto front can be taken as the final design. The choice of an appropriate 
level of cost or robustness, however, is problem-specific. When no such a design preference is 
specified, the knee point on the Pareto Front, which yields the best compromise between robustness 
and cost efficiency, may be taken as the most preferred design in the design space. Interested readers 
are referred to Branke et al. (2004) and Deb and Gupta (2011) for detailed procedures for identifying 
the knee point on the Pareto Front.  

Instead of the genetic algorithms such as NSGA-II, the Pareto front shown in Figure 9-3 could 
also be identified with the simplified procedure detailed in Khoshnevisan (2015), in which the 
bi-objective optimization is transformed into a series of single-objective optimizations. Further, the 
owner or client may be only interested in the most preferred design in the design space (i.e., the knee 
point on the Pareto front), and not the Pareto front per se. Thus, a simplified procedure is further 
developed in Gong et al. (2016b), in which the multi-objective optimization is solved through a series 
of single-objective optimizations and the knee point on the Pareto front could be identified directly 
(Khoshnevisan et al. 2014; Gong et al. 2016b). 

 

9.4.3 Procedures for Implementing Robust Geotechnical Design 
 

The procedures for implementing the proposed RGD could be summarized in the following main 
steps: 

Step 1: Describe the geotechnical problem of concern with mathematical models. Here, the 
system response of concern, noise factors, and design parameters are identified; meanwhile, the 
design (safety) requirements, design robustness, cost, and design space are formulated. 

Step 2: Carry out the robust design optimization considering design robustness, cost efficiency, 
and safety requirements using the optimization setting shown in Eq. (9-7), where the design 
robustness and safety requirements for each candidate design could be analyzed based on the level of 
characterization of the uncertain input parameters (or noise factors). The results of the optimization 
culminate in a Pareto front showing a tradeoff between design robustness and cost efficiency for all 
the non-dominated designs that satisfy the safety requirements. Here, the Pareto front can be 
identified using either the genetic algorithms such as NSGA-II (Deb et al. 2002) or simplified 
procedure in Khoshnevisan (2015). 
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Step 3: Select the most preferred design on the derived Pareto front. In principle, either the least 
cost design that is above a pre-specified level of design robustness or the most robust design that falls 
within a pre-specified cost level may be selected as the most preferred design in the design space. 
Alternatively, the knee point, which represents the best compromise solution in the design space, may 
be identified (Branke et al. 2004; Deb and Gupta 2011). It is worth noting that the most preferred 
design in the design space could also be identified directly with the simplified procedure in Gong et al. 
(2016b). 
 

9.4.4 Cases Study 
 
To demonstrate the versatility and effectiveness of the RGD, three cases, including braced excavation, 
shield tunnel, and retaining wall, are studied in this section.  
 

9.4.4.1 Case 1: Robust design of braced excavation 
The first case concerns the robust design of a shoring system, which consists of soldier piles (i.e., 
reinforced concrete piles) with timber laggings and tieback anchors, for an excavation in a sandy soil 
deposit, as shown in Figure 9-4. The robust design of this case is detailed in Gong et al. (2016b). In 
this case, the diameter of the concrete soldier pile (D), length of the concrete soldier pile (L), interval 
of concrete soldier piles (I), vertical spacing of tieback anchors (V), horizontal spacing of tieback 
anchors (H), and the angle of tieback anchors with respect to the horizontal direction (α) are taken as 
the design parameters. Whereas, the preload of tieback anchors is chosen at 20 ton per tieback, and the 
length of tieback anchors is set at 8.0 m based on local practice. For illustration purpose, a discrete 
design space is considered, which specifies the possible selections of the design parameters, as listed 
in Table 9-1, and 38,500 candidate designs are considered.  
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Figure 9-4. Excavation with a shoring system of soldier piles and anchor tiebacks 

 
The drained cohesion (c), drained friction angle (ϕ') and modulus of horizontal subgrade 

reaction (kh), along with the surcharge behind the wall (qs), are considered the noise factors (i.e., 
uncertain input parameters). Due to the limited availability of site specific-data, only the nominal 
values of the noise factors could be estimated; as such, the design robustness is measured herein by 
the gradient-based sensitivity index (SI). Through which, the variations in the noise factors are 
recognized but there is no need to perform a detailed statistical characterization of the noise factors, as 
the system response (i.e., stability and deformation) and its sensitivity with respect to the noise factors 
could be approximately evaluated with the nominal values of the noise factors. 
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In general, the safety requirement of a braced excavation is evaluated through the limiting factors 
of safety and limiting maximum wall and/or ground deformation (JSA 1988; TGS 2001; PSCG 2000). 
Here, TORSA, a commercially available FEM code based on the beam-on-elastic-foundation theory 
(Sino-Geotechnics 2010), is used to compute the system responses, including the factor of safety 
again push-in failure (FS1), factor of safety against basal heave failure (FS2), and the maximum wall 
deflection (y). In RGD, the maximum wall deflection is chosen as the system response of concern for 
the purpose of defining the design robustness; whereas, the safety requirement is evaluated with the 
computed factors of safety and wall deformation. 

 
Table 9-1. Design space of the design parameters for Case 1 

Design parameter Design space 

Diameter of the solider pile, D (m) {0.3 m, 0.4m, 0.5m, 0.6 m, 0.7 m} 

Length of the solider pile, L (m) {14 m, 15 m, 16 m, 17 m, 18 m, 19 m, 20 m} 

Horizontal interval of the solider pile, I (m) {D, D + 0.1 m, D + 0.2 m, …, D + 1.0 m} 

Vertical spacing of tieback anchors, V (m) {2.0 m, 2.5 m, 3.0 m, 3.5 m} 

Horizontal spacing of tieback anchors, H (m) {1.5 m, 2.0 m, 2.5 m, 3.0 m, 3.5 m} 

Installed angle of the tieback anchor,  () {10, 15, 20, 25, 30} 

 
For a shoring system project, the cost (C) should be the sum of the cost on excavation, cost on 

soldier pile wall and cost on tieback anchors. Because the site dimensions and excavation depth, in the 
specified project, are predefined based on the project’s requirements, the cost on excavation will not 
affect the optimization results, and only the cost on the shoring system is considered in the robust 
design optimization. The detailed formulation of the cost (C) could be found in Gong et al. (2016b). 
The robust design optimization setting of this case is depicted in Figure 9-5. 
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Figure 9-5. Robust optimization setting for Case 1 (where Hf is the final excavation depth) 

 
Applying the genetic algorithm NSGA-II (Deb et al. 2002), the robust design optimization shown 

in Figure 9-5 yields a Pareto front, as plotted in Figure 9-6(a); then, the knee point is located, which is 
also plotted in Figure 9-6(a). Meanwhile, the robust design is carried out using the simplified 
procedure in Gong et al. (2016b); with which, the knee point is identified directly without 
constructing the Pareto front and the results are plotted in Figure 9-6(b). Note that the difference 
between the knee point obtained by the simplified procedure and that obtained by the multi-objective 
optimization algorithm NSGA-II is quite negligible. Next, a comparison with the original design that 
was selected by the engineering firm is made. The original design is the one designed by an 
experienced engineering firm (Hsii-Sheng Hsieh, personal communication 2013) without the 
knowledge of RGD. While the original design appears to be a sound engineering practice, offering a 
compromise between the least cost design and the most robust design, it is inferior to the knee point 
on the Pareto front, as the latter is more robust and cost less. Through this real-world application, the 
advantages of RGD are demonstrated. 

The design parameters of these designs are tabulated in Table 9-2. Here, the knee point on the 
resulting Pareto front is obtained by the normal boundary intersection approach (Deb and Gupta 2011) 
and marginal utility function approach (Branke et al. 2004). These two approaches yield the same 
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design, denoted as d2-1. The difference between the design parameters of the most preferred design 
obtained by the simplified procedure, denoted as d2-2, and those of d2-1 is relatively small and could be 
ignored. The results show that the most preferred design obtained by the simplified procedure is 
practically the same as the knee point on the Pareto front obtained by the multi-objective optimization 
method, which requires a two-step solution (developing a Pareto front by the multi-objective 
optimization using genetic algorithms such as NSGA-II, and then searching for knee point on the 
Pareto front). From there, the effectiveness of the simplified procedure is demonstrated. 
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Figure 9-6. Results of the robust design for Case 1 
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Figure 9-7. Analysis model of shield tunnels (Huang et al. 2014b) 

 

9.4.4.2 Case 2: Robust design of shield tunnel 
The second case considers the robust design of the cross section of a shield tunnel in Shanghai, as 
shown in Figure 9-7. The robust design of this case is detailed in Huang et al. (2014b). In this case, 
the segment thickness (t), steel reinforcement ratio (), and diameter of joint bolt (Dj) are dealt as the 
design parameters and which are to be optimized in a pre-assigned design space. The soil resistance 
coefficient (Ks), soil cohesion strength (c), soil friction angle (ϕ), ground water table (HGWT), and 
surcharge (q0) are considered as the noise factors. Here, only the upper and lower bounds of the noise 
factors can be estimated and which are tabulated in Table 9-3. The other deterministic parameters to 
assess the tunnel performance, in terms of the structure safety (i.e., ULS performance) and 
serviceability (i.e., SLS performance), are tabulated in Table 9-4. 
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Table 9-2. Most preferred design obtained with different approaches for Case 1 

Adopted approach 

Design parameters Design performances Cost, C 

(10,000 

USD) 

Sensitivity 

index, SI 
D 

(m) 

L 

(m) 

I 

(m) 

V 

(m) 

H 

(m) 

 

() 
Fs1 Fs2 y (cm) 

NSGA-II and normal 

boundary intersection 

approach, d2-1 

0.6 18 1.6 3.0 2.0 10 5.67 2.96 3.48 13.12 4.28 

NSGA-II and marginal 

utility function  

approach, d2-1 

0.6 18 1.6 3.0 2.0 10 5.67 2.96 3.48 13.12 4.28 

Simplified procedure, d2-2 0.5 18 1.4 3.0 2.0 10 5.67 2.96 4.94 12.31 5.58 

Original design, d0 0.5 17 0.6 3.0 2.5 20 4.46 2.75 4.13 14.42 11.22 

 
The design robustness, in this case, is evaluated using the fuzzy set-based signal-to-noise (SNR), 

the cost (C) is represented by the material cost of one tunnel ring that consists of segment concrete 
cost, steel reinforcement cost and joint bolts cost, and the safety requirements (i.e., ULS and SLS 
behaviour) are evaluated using the reliability indexes that are derived from the fuzzy outputs. The 
formulations of the design robustness, cost, and safety requirements are detailed in Gong et al. 
(2014a). 

 
Table 9-3. Parameters characterizing membership functions of noise factors 

Noise factors 
Lower 

bound, a 

Mode, 

m = (a + b)/2 

Upper 

bound, b 

Soil resistance coefficient, Ks (kN/m3) 3500 9250 15000 

Soil cohesion strength, c (kN/m2) 0 7.5 15 

Soil friction angle,  () 30 32.65 35.3 

Ground water table, HGWT (m) 0.5 1.25 2 

Ground surcharge, q0 (kN/m2) 0 10 20 

 
In this case, the design parameters (t, , Dj) are to be optimized in the contiguous design space of 

[0.2 m, 0.5 m], [0.5%, 4.0%] and [10.0 mm, 50.0 mm] such that the design robustness and cost 
efficiency are maximized simultaneously. The robust design optimization setting of this case is set up 
as follows: 
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          Maximizing the robustness index of SLS, SNR

                       Minimizing the cost, C(t, ρ, D )

               (9-8) 

 
where ββ1 and ββ2 represent the reliability index of this shield tunnel with respect to the ULS and SLS 
behaviour, respectively; and, SNR1 and SNR2 represent the design robustness of this shield tunnel 
with respect to the ULS and SLS performance, respectively. 

With the robust design optimization setting shown in Eq. (9-8), the RGD of this shield tunnel is 
readily conducted with NSGA-II (Deb et al. 2002). In this non-dominated optimization using 
NSGA-II, the population size is assigned as 50 while the generation number is set as 100. The 
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resulting non-dominated optimal designs are depicted in Figure 9-8, the tradeoff relationship between 
the robustness (i.e., SNR1 and SNR2) and cost is clearly illustrated: design robustness tends to increase 
with the cost. Thus, the desire to maximize the design robustness and the desire to minimize the cost 
are two conflicting objectives. 

Note that while the obtained non-dominated optimal designs shown in Figure 9-8 concentrate in 
a relative narrow range due to the safety requirements adopted, no single best design could be 
screened out. In order to further ease the decision making in the RGD of shield-driven tunnels, the 
knee point on the Pareto front is identified. The resulting knee point is employed as the most preferred 
design and the best compromise among the conflicting design objectives. The design parameters of 
the identified knee point are: t = 288.1 mm,  = 1.16 %, Dj = 49.2 mm, and corresponding 3-D 
coordinate in Figure 9-8 is: SNR1 = 10.793, SNR2 = 16.070, C = 1234.2 USD. 
 

Table 9-4. Constant parameters involved in the tunnel design 

Category Parameter Value 

Tunnel 

geometry 

parameters 

Embedded depth, H (m) 15.0 

Tunnel inner radius, Rin (m) 2.75 

With of tunnel ring, b (m) 1.0 

Joint position of half structure, i () 8, 73, 138 

Tunnel segment 

Unit weight of concrete, c (kN/m3) 25.0 

Elastic modulus of concrete, Ec (kN/m2) 35106 

Compression strength of concrete, fc (kN/m2) 39103 

Ultimate plastic strain of concrete, p 0.0033 

Reinforcement 

steel 

Elastic modulus of steel, Es (kN/m2) 210106 

Yielding strength of steel bar, fy (kN/m2) 345103 

Thickness of protective cover, a (m) 0.05 

Joint bolts 

Bolt length, lb (m) 0.4 

Number of bolts at each joint 2 

Distance from joint bolts to tunnel inside surface, h t/3 
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Figure 9-8. Resulting non-dominated optimal designs for Case 2 
 

To demonstrate the significance of the RGD of shield tunnels, a comparison among the robust 
design, probabilistic design and current practice (i.e., design adopted in Shanghai) is conducted, and 
the results are listed in Table 9-5. Comparing with probabilistic design and current practice, the design 
parameters of robust design are notably adjusted: the segment thickness is decreased while the steel 
reinforcement ratio and joint bolts diameters are increased; that is to say, the joint stiffness is 
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increased while the stiffness of segment is decreased. This adjustment of the design parameters of the 
shield tunnel is quite reasonable. Though the resulting robustness indexes (SNR1 and SNR2) do not 
change much, the variation (i.e., COV) of tunnel performances do decrease significantly. For example, 
the variation of the system performance of the robust design is significantly reduced (as large as 30% 
for ULS) whereas the cost is only increased by 25%. Thus, the significance of the RGD is illustrated.  

 

Table 9-5. Comparison among three design designs for Case 2 

Category Parameter Robust design 
Probabilistic 

design 

Current 

practice 

Design parameters 

t (mm) 288.1 343.5 350.0 

 (%) 1.16 0.83 0.50 

Dj (mm) 49.2 28.5 30.0 

Safety 
1 of ULS 4.20 4.20 2.51 

2 of SLS 2.70 2.70 3.08 

Robustness 
SNR1 of ULS 10.793 10.160 8.533 

SNR2 of SLS 16.070 16.210 16.424 

Cost C (USD) 1234.2 1175.5 988.9 

Coefficient of 

variation (COV) 

Fs1 of ULS 0.289 0.310 0.374 

Fs2 of SLS 0.157 0.155 0.151 

 

9.4.4.3 Case 3: Robust design of retaining wall 
The third case considers the robust design of a retaining wall, as shown in Figure 9-9. The robust 
design of this case is detailed in Huang et al. (2014a). In this case, the top width (a) and base width (b) 
of the retaining wall are treated as the design parameters, and which are to be optimized in the discrete 
design space of {(a, b)| a = 0.2 m, 0.4 m, 0.6 m and b = 0.6 m, 0.7 m, 0.8 m, , 3.0 m}. The unit 
weight of the backfill soil (), soil friction angle (φ), friction angle between the backfill and retaining 
wall (), and the adhesion (ca) are considered as the noise factors. Here, the noise factors are 
characterized as uncertain variables, however, the statistics of which could not be estimated with 
certainty. The statistical information of the noise factors is tabulated in Table 9-6; note that the COVs 
of the noise factors are assumed to be lognormally distributed. Here, the performances regarding the 
overturning and sliding failure are studied. 
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Figure 9-9. Schematic diagram of the retaining wall design for Case 3 
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The safety requirements are evaluated using the mean of the failure probabilities (i.e., Pf1 and Pf2 
for the overturning and sliding failure, respectively), the design robustness is evaluated using the 
reliability-based feasibility index (i.e., ββ1 and ββ2 for the overturning and sliding failure, respectively), 
and the cost (C) is evaluated using the volume of the retaining wall. Detailed formulations of these 
factors could be found in Huang et al. (2014a). 

 

Table 9-6. Statistical information of the noise factors for Case 3 

Noise factors 
Distribution 

type 
Mean,  

Coefficient of 

variation, COV 

Mean of COV, 

_cov 

Standard deviation 

of COV, _cov 

Unit weight, s Normal 18kN/m3 2~10% 6.5% 1.17% 

Friction angle,  Normal 35 5~20% 10% 2.50% 

Friction between soil 

and retaining wall,  
Normal 20 5~20% 10% 2.50% 

Adhesion between wall 

base and clay, ca 
Normal 100kPa 10~30% 15% 3.33% 

 
Figure 9-10 shows the tradeoff relationship between the variation of the failure probability and 

the cost, the variation of the failure probability generally decreases with the increase of the cost. Next, 
the reliability-based feasibility indexes of these discrete candidate designs are studied and the results 
are plotted in Figure 9-11; as expected, the reliability-based feasibility index often increases with the 
cost. With the aid of Figure 9-11, the final design could be readily identified. For example, Table 9-7 
illustrates the resulting robust designs that are identified for a series of target reliability-based 
feasibility indexes. 

 

Table 9-7. Identified final designs for Case 3 

Target reliability-based 

feasibility index, T 

Confidence level, 

Pr[Pf < PfT] 

Identified 

final design 

Reliability-based 

feasibility index,  
Cost, C 

T =1.5 93.32% 
a = 0.2 m 

b = 2.1 m 

1 = 2.36 

2 = 1.88 
6.9m3/m 

T =2.0 97.72% 
a = 0.2 m 

b = 2.2 m 

1 = 3.41 

2 = 2.11 
7.2 m3/m 

T =2.5 99.38% 
a = 0.2 m 

b = 2.5 m 

1 = 6.21 

2 = 2.65 
8.1 m3/m 

T =3.0 99.87% 
a = 0.2 m 

b = 2.8 m 

1 = 10.21 

2 = 3.03 
9.0 m3/m 

 

9.4.5 Part B – Discussion and Conclusion 
 

The uncertainties in soil parameters, solution model, applied loads, and those caused by the 
construction, often make it difficult to ascertain the performance of a geotechnical design. In 
traditional deterministic approaches, these uncertainties could not be explicitly characterized and 
included in the design analysis; rather, a conservative factor of safety (FS) is adopted based on the 
concept of “calculated risk”. This FS-based design approach often leads to an inefficient over-design 
with an unknown and/or inconsistent safety level, although under-design is also a possibility. To 
achieve a more rational and consistent assessment of the safety, the reliability-based design (RBD) 
approach has long been suggested as an alternative. The RBD approach for the design of a 
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geotechnical structure is often implemented with a target reliability index, which is derived from a 
cost-benefit analysis that balances investment and risk considering the failure probability and 
consequence.  

 

 

(a) Overturning failure mode         (b) Sliding failure mode 

Figure 9-10. Tradeoff between the variation of the failure probability and the cost (Case 3) 

 

  

(a) Overturning failure mode         (b) Sliding failure mode 

Figure 9-11. Relationship between the reliability-based feasibility index and the cost (Case 3) 
 
In the context of RBD approach, the performance of a geotechnical structure is analyzed using 

probabilistic methods that consider explicitly uncertainties in input parameters and/or solution models. 
It is noted that although various methods have been investigated to estimate the statistics of soil 
parameters and model errors, the statistics of soil parameters and those of model errors could not be 
characterized with certainty due to limited availability of site-specific data. Because of the difficulty 
in obtaining the accurate statistical characterization of soil parameters and model errors in practice, 
the RBD approach is not widely applied in geotechnical practice; rather, the load and resistance factor 
design (LRFD) approach, which is a simpler variant of the RBD approach by design, is more 
commonly used. The LRFD code employs partial factors (e.g., resistance factors and load factors), 
which have been calibrated to achieve a target reliability index approximately over a range of design 
scenarios covered by the code. The resulting design is a function of the specified partial factors and 
selected nominal values, with due consideration of cost. As is well recognized, LRFD is meant to be a 
simpler variant of the more demanding RBD; the ideal outcome is that the design obtained by LRFD 
could achieve the same target reliability index as that obtained by RBD. However, the standard LRFD 
approach that involves fixed partial factors cannot cover all design scenarios involving different levels 
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of variation of soil parameters and model errors. For a given design scenario, the use of the standard 
LRFD code may lead to a design that deviates from the target reliability index by an unknown amount, 
more likely on the conservative side but under-design is also a possibility.. 

In such circumstances, the robust geotechnical design (RGD) philosophy was advanced. With 
which, the uncertainty in the predicted performance of a given geotechnical design could be 
effectively reduced in the face of recognized but unquantified uncertainties (i.e., the uncertainties in 
soil parameters, solution model, applied loads, and those caused by construction). The purpose of 
robust design is to derive a design that effectively accounts for the effect of the variation in “noise 
factors” while simultaneously considers the safety and cost efficiency. In this report, the RGD, along 
with the fundamental issues of how the design robustness is measured, how the robust design 
optimization is conducted, and how the most preferred design in the designs space is selected, is 
presented and illustrated with cases studies. Based upon the results outlined in this report, the 
versatility and significance of the RGD are demonstrated. 
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Discussion 

Petr Koudelka (Koudelka@itam.cas.cz, Czech Academy of Science, Czech Republic) 
 
Robustness is a new and indefinite phenomenon in geotechnics. Chapter 9 contains an important and 
advanced well-done work in a range formerly marked as “Hic sunt leones”. Two robustness types and 
their definitions are given and analysed in Parts A and B. Comments and remarks relate to the Part A – 
accommodating events and actions that were not foreseen in design (par. 9.3): 

1. 9.3.1 Human errors. In my opinion, design should not take into account human errors either 
“grey swans” either “black swans”. Of course, a solid design should be so robust to 
accommodate little allowable geometric inaccuracies. An allowable level for human errors 
should be e.g. “splashy white swans”. 

2. 9.3.2.1 Prescriptive measures. Prescriptive measures referred to relevant robustness are very 
important and can provide considerable effects and increased robustness. 
Val (2006) notes on removal of a single vertical element do not appear to be entirely exact. 
The element and type of structure are not specified. Due to it, it is impossible to evaluate if 
the element removal would lead still to redundant or on the contrary, determinant structure or 
to a loss of structure stability. 

3. 9.3.2.2 Partial factor methods. Almost all structure design ranges except of geotechnical and 
plastic materials carry out analyses of structures in elastic state of the materials. All 
geotechnical tasks are very complexly non-linear due to extremely complex non-linear 
behaviour of soil shear strength (top and residual values). Models accommodating soils are 
also, of course, complexly non-linear. Those models may be analysed according to laws of 
mathematics and mechanics with the most probable material values which have behaviour near 
to a real structure. If we changed material values far from the most probable ones we analyse an 
entirely other model with entirely other behaviour. 

All ULSD design approaches of EN 1997-1 (EC) are based on a definition of characteristic 
values and partial factors for material/soil properties those change a crucial soil property (shear 
strength) from the most probable value (50 % mean value) to almost improbable design value, 
e.g.: 

Primarily consider soil variability coefficient v=0.10 and material partial factor γm=1.25 
(corresponding to effective shear strength) then a probability of a worse design value 
occurrence is of 0.04 % which is of 125 times less than occurrence to the relevant characteristic 
value and of 2500 times less to the relevant most probable value. 

Secondary consider variability coefficient v=0.15 and material partial factor γm=1.4 
(corresponding to undrained shear strength) then a probability of a worse design value 
occurrence is of 0.11 % which is of 45 times less than occurrence of relevant characteristic 
value and of 900 times less to the relevant most probable value. Or consider v=0.10 and the 
probability is less of 0.01 % which is more than of 500 times less to relevant characteristic 
value probability and more than of 10, 000 times less to the relevant most probable value. 

Therefore, in my opinion, it is possible it to state: 
a) Geotechnical designs according to the last EC are still too much conservative. It means, 

they should be very robust if site conditions agree with model. On the other hand this 
robustness would have not to be adequate if variation coefficient is higher or a model 
would not consider a significant event, e.g. existing erosion. From this point of view, 
prescriptive measures according to 9.3.2.1 (checking, review and supervision of design 
and construction) appear more important for an acceptable robustness than too 
conservative “usual” EC design. 

b) Models according all Design Approaches of EC demonstrate different behaviours those 
are very dissimilar to behaviours of real soil masses. Hence, no model partial factors or 
factors close to of 1.0 would be necessary if the most probable material values would 
be considered. 

c) More detailed comments on a concept of more applicable partial factor method see in 
following point 4 (to 9.3.2.5). 

4. 9.3.2.5 Direct assessment of design values. An apprehension on no provision for robustness 
of procedures using “worst credible values” or other similar procedures may not be true. A 
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concept of simpler and probably more suitable procedure to the EC approaches can be as 
follows: 
a) Definition of soil material design values: Design value is a cautious most probable value 

of the value set related to the structure. The term “cautious” could mean an elimination of 
favourable out layers or extremes, judgement of possibility of a properties change (e.g. 
water saturation) etc. 

b) Design safety and reliability is ensured with a system of partial factors for a resistance. 
A base of the system could be taken according to former safety factor system that affords a 
lot of long-term experiences and could be improved using contemporary knowledge, e.g. 
probability based design. 

c) Former system of partial factors for resistance also contains a stage of robustness that has 
been verified in long practice. New requirements for robustness or structure importance 
might to be taken simply into account by resistance factor increments. 

d) The design value concept relates to soil material properties only. Others partial factors and 
characteristic values would not be changed. 

e) The concept would be applicable for all methods and procedures, advanced including. 
5. 9.3.3 Concluding remarks. An apprehension on “worst credible“/most probable values may 

not provide the required robustness appears not well-founded. See point 4. 
 
Conclusion:  
 
A looking for more or less very improbable design material values for soils appears to be 
counter-productive. A clear and simple solution for all methods (FEM, BEM, simple methods, RBD) 
is application of the cautious most probable design values and relevant partial resistance factors. 
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Chapter 10 Future Directions & Challenges 
 
 

10.1 INTRODUCTION 
 
The ISSMGE Global Survey on the State of the Art (SoA) and the State of the Practice (SoP) in 
geotechnical engineering was conducted between 10 March and 30 April 2017. To quote the words of 
ISSMGE President Roger Frank in his message to the Society on 27 February, this survey is intended 
to support the main goal of ISSMGE, which pertains to “transferring to practice more results from the 
academic research and, reciprocally, help better feeding the academic research with the needs of 
practice”. The President noted that the “ISSMGE Technical Committees (TCs) are, obviously, the 
main tool for achieving this important goal.” 

This Report constitutes a partial response from TC205 and TC304 to facilitate exchange of ideas 
between researchers and practitioners. It does not claim to be comprehensive in coverage or to offer a 
definitive resolution to any topics. It does assemble a fairly substantial portion of our recent literature 
that is regarded by various contributors as potentially useful to practice. The contributions collated in 
this Chapter are intended to inform activities for the next TC205 and TC304.  
 
10.2 SUMMARY OF ISSMGE GLOBAL SURVEY OUTCOMES FOR TC304 

Prepared by TC304 for ISSMGE Technical Oversight Committee 
 
10.2.1 Background 
 
TC304 identified the following ‘hot topics’ in the practice – 

1. Value of reliability- and risk-informed decision making in practice 
2. Geotechnical databases and probability models 
3. Practical methods to manage geotechnical risk for real-world problems (semi-probabilistic, 

reliability-based, risk-informed) 
Three questions related to the hot subjects are asked during the survey. The survey has received 192 
responses, accounting for 14.83% of the total responses that ISSMEGE received during this survey. 
The three questions are as follows. 

Q1: Have you adopted a reliability- or risk-informed method for design, assessment, and/or 
management of a geotechnical project? 

Q1a: If YES to the first question, provide some project details and highlight how your 
method complements the factor of safety approach? 
Q1b: If NO to the first question, what are your reservations or concerns? 

Q2: In relation to bridging state-of-the-art and state-of-the-practice, which aspect(s) of 
reliability- or risk-informed decision making deserve the most attention (e.g. role of engineering 
judgment, selection of characteristic value, statistical interpretation of site data and other 
geotechnical data, target reliability/risk level, Bayesian observational approach, codification 
versus site-specific needs)? 
Q3: What are the top three items in your 'wish list' that you feel would facilitate adoption of 
reliability or risk-informed decision making in geotechnical practice (e.g. statistical guidelines, 
databases, software, short courses, clearer design standards/codes, case studies, bibliography) 

Q1 is used to identify whether the participants have experiences on reliability and risk informed 
methods. Q1a and Q1b are follow-up questions for Q1. Q1b is important, because it may identify 
possible causes for the gap between SOA and SOP. Q2 and Q3 are used to further identify possible 
solutions that can bridge the gap. 
 
10.2.2 Summary of survey results 
 
Q1 is about whether the participants have used reliability- and risk-informed methods in practice. 29 
participants responded and about 65% are positive. 
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Q1a received 15 replies. The following areas/subjects are among the most frequent ones where 
reliability- and risk-informed methods are applied: (a) slope stability, mining, landfill, and dams 
(7 replies); (b) tunnel and underground mega projects (3 replies); (c) offshore foundations (2 
replies). 
 

  
 
 
Q1b is about the possible causes for the gap between SOA and SOP. It received 7 replies. The 
following causes are among the most frequent ones: (a) lack of data (3 replies); (b) not 
compatible with regulations (2 replies); and (c) lack of knowledge (1 reply). 
 

  

Q2 is about the aspect of reliability- or risk-informed methods that deserves the most attention, in 
order to bridge SOA and SOP. These aspects can be viewed as actions that can improve SOA. 70 
participants responded. The following aspects are among the most frequent ones: (a) role of 
engineering judgement (15 replies); (b) selection of characteristic value (14 replies); (c) target 

Yes 

No 
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and dams 

Tunnel and underground 
mega projects 
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Mi
sc. 

Lack of data 
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Lack of knowledge 
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Q1: Have you adopted a reliability- or 
risk-informed method for design, 
assessment, and/or management of a 
geotechnical project?  

Q1a: If Yes, provide details and 
highlight how your method 
complements the FOS method? 

Q1b: If No, what are your 
reservations or concerns? 



Joint	TC205/TC304	Working	Group	on	“Discussion	of	statistical/reliability	methods	for	Eurocodes”	
–	Final	Report	(Sep	2017)	

194 
 

reliability/risk level (14 replies); (d) statistical interpretation of geotechnical data (11 replies); (e) 
Bayesian observational approach (7 replies); and (f) codification versus site-specific needs (7 replies). 
 

 
 
Q3 is about the top three items in wish list to facilitate adoption of reliability- or risk-informed 
methods. These items can be viewed as actions that can improve SOP. The following items are among 
the most frequent ones: (a) clearer design codes (13 replies); (b) case studies and examples (11 
replies); (c) soil/rock database (9 replies); (d) statistical guideline for site investigation data (8 replies); 
(e) short course or workshop (8 replies); and (f) software (6 replies). 
 

 
 
10.2.3 Analysis of survey results 
 
Q1: use of reliability- and risk-informed methods in practice 
There are about 65% of participants have actually applied reliability- and risk-informed methods. This 
may not represent the actual condition for two reasons. First, the percentage for participants with 
academic background in the survey may be higher than normal. Second, participants for the survey 
may be already interested in the reliability- and risk-informed methods. 

Q1a: areas with most application 
The survey results are largely consistent with existing practice: reliability- and risk-informed 
methods have been implemented to areas such as slope stability, mining, landfill, embankments, 
dams, and tunnels. These are areas that traditionally welcome reliability- and risk-informed 
methods. Areas where reliability-based design codes are available, e.g., foundation design, are 

Role of engineering 
judgment 

Selection of characteristic 
value 

Target reliability 
and risk level 

Statistical interpretation
of geotechnical data 

Bayesian observational 
approach 

Codificati
on versus 
site‐speci
fic needs 

Misc. 

Q2: In relation to bridging 
state-of-the-art and state-of-practice, 
which aspect(s) of reliability or 
risk-informed decision making deserve 
the most attention? 

Q3: What are the top three items in your 
'wish list' that you feel would facilitate 
adoption of reliability or risk-informed 
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not in the list probably because practitioners only need to follow the codes. It is interesting to see 
emerging areas such as offshore engineering and mega city engineering also welcome reliability- 
and risk-informed methods. 
Q1b: causes for the gap between SOA and SOP 
It is very interesting to see that the lack of data is a main cause for the gap. This raises a red flag 
to the recent research trend that focuses on models and methodologies. Indeed, reliability- and 
risk-informed methods heavily rely on data. Without real data, models and methods have no use. 
Insufficient background knowledge is another cause for the gap. This indicates that education is 
important. 

Q2: bridging SOA and SOP – actions to improve SOA 
Engineering judgment is an important element for geotechnical engineering, no matter reliability 
methods are adopted or not. The participants for the survey acknowledge this importance. Selection of 
characteristic value and determination of reliability level are examples of exercising engineering 
judgment. However, researchers (SOA) tend to focus more on developing new models and methods 
but less on the role of engineering judgment. There seem to be needs to provide clearer guidelines to 
facilitate engineering judgment, such as clearer guidelines for selecting characteristic value and target 
reliability level. There also seem to be needs to develop guidelines for statistical interpretation of 
geotechnical data. 
Q3: wish list – actions to improve SOP 
Geotechnical engineering practice is deeply connected with design codes. The participants express the 
sentiment that current design codes are not clear enough. One possible factor is that the principle and 
steps for the selection of characteristic value are unclear. Another one is that the statistical guidelines 
for analyzing geotechnical data are unclear. Soil and rock databases are essential for reliability- and 
risk-informed methods. The participants express the sentiment that such databases may not be 
available. Education (in terms of application examples, short courses, workshops, etc.) is another item 
that needs more attention. Finally, there seem to be needs for software. 
Lessons learned from survey results 
The survey results are stimulating. Based on the results, TC304 plans to focus on the following 
activities during the next term (from 2017 to 2021): 
1. Design codes. TC304 has been interacting with TC205 in the discussion of possible use of 

statistical methods in future Eurocode 7 in a series of activities. TC304 will continue this line of 
activities. The selection of characteristic value and statistical guideline for site investigation data 
will be possible subjects. 

2. Soil/rock databases and softwares. Task forces will be established within TC304 to develop 
soil/rock databases. These databases will be made available to the public through web-based or 
app-based softwares. These softwares will also be able to conduct statistical analysis for the 
soil/rock data. 

3. Education. TC034 will organize short courses and workshops to educate engineers about the 
following aspects: (a) reliability and risk methods; (b) statistical methods for site investigation 
data; (c) case studies and application examples. 

 
10.3 SUMMARY OF ISSMGE GLOBAL SURVEY OUTCOMES FOR TC205 
Prepared by TC205 for ISSMGE Technical Oversight Committee 
 
10.3.1 Issues covered 
 
TC205 took the opportunity to examine three areas, considered to be most critical in current debates: 
 How safety is currently being prescribed in practical design 
 What limit states are considered to be most important 
 How input for design is derived from ground investigation and load testing. 

 
10.3.2 Overview of the survey respondents, demographics etc 
 
The responses were interesting and informative, although, with an average of 14 responses per 
question it is difficult to gauge whether they are representative of the profession, or of any sector or 
geographical region within it. All questions were answered. 55% of the responses to the survey as a 
whole came from Europe (Q2). It is perhaps surprising that most of the responses came from 
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“industry”, with only 28% of responses from academic institutions (Q3). These issues may have 
biased the balance of the answers, and it is unfortunate that the sources from which responses came to 
TC205 specifically are not known. 
 
10.3.3 Summary of responses received 
 
Safety formats 
It was clear that a majority of respondents (80%) now consider use of limit state design with partial 
factors to be “normally used in practice” (Q86). A few considered older methods such as global 
factors or permissible stress design to be normal, while only one thought use of reliability calculations 
is normal practice. This changed very little when respondents were asked about “the next decade or 
so” (Q87). There was divided opinion about whether different safety formats are used for more 
critical design situations (Q88). 

About two-thirds of respondents thought that very little attention is given to serviceability limit 
states, in comparison with that given to ultimate limit states (Q89). About two-thirds of these thought 
this was inappropriate, presumably indicating that more attention should be given to serviceability 
(Q90). The question whether this situation is likely to change over the next decade drew a wide range 
of responses, with an average of 50%, i.e. undecided overall (Q91). 

Surprisingly, considering the answers to Q86 (above), the average view of percentage of large 
civil engineering projects for which reliability calculations are used in practical design was 23% 
(Q92), while about half the respondents said that reliability calculations are used for other purposes 
such as national calibration of codes of practice (Q94). Asked whether they expected this situation to 
change over the next decade, the average response was “37%”, indicating a lack of expectation that 
much will change (Q93). 

25% or respondents considered that Performance Based Design is adopted in practice (Q95), 
with an average of “30%” indicating a lack of expectation that much will change over the next 
decade, (Q96). (Caution: within the last few months TC205 has discussed Performance Based Design 
at some length, and it is clear that there are considerably different understandings of the meaning of 
this term. This makes the response to this question difficult to interpret.) 

Respondents were asked to rate “how often are national standards generally followed literally” 
(0) compared with “other calculation methods commonly used (100). The average response was 27, 
with a large scatter – standard deviation of 29 (Q97). 25% of respondents answered “0” and one 
answered “100”. We take this to mean that national standards are most often not followed very 
literally, but presumably used for guidance. 
 
Ground investigations and characteristic values 
Almost all respondents said that borehole sampling and testing is commonly used, with about 
two-thirds also selecting CPTs and two thirds selecting SPTs, including some who selected both of 
these (Q98). A third of respondents said that field tests such as pressuremeters are common, with one 
mention of shear wave testing. 

Asked how often results of site investigation are used to generate design resistances (0), rather 
than to derive soil properties (100), the average answer was “65” (Q99), indicating that they are used 
to derive soil properties slightly more often than to derive resistances directly. A variety of different 
approaches was used to provide margins of safety when resistances are derived directly from test 
results (Q100). For calculations based on soil strengths, partial factors applied to material strength 
were most commonly applied; there were some other alternatives, but the use of factors on resistances 
was not mentioned in this context (Q101). 

Both advantages and disadvantages were noted for direct derivation of resistances from ground 
tests and calculations based on soil parameters (Q102, Q103). It was noted that direct derivation of 
resistances removes one step of uncertainty, but generally respondents thought that use of soil 
parameters was more achievable and gave the engineer greater understanding and control. 

Respondents unanimously agreed that insufficient site investigation is normally undertaken in 
terms of cost-benefit (Q104). 
 
10.3.4 Significance of the survey for TC205 
 
Overall, the results of the survey, including Q244 (asking for general feedback on narrowing the gap 
between SoA and SoP), support themes that are already being followed by TC205: 
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 Partial factoring is the dominant method of prescribing safety, and is likely to remain so for the 
foreseeable future. Refinement of this process therefore remains important. 

 Cautious development of reliability methods, balancing interest in exploring benefits with a 
degree of scepticism. 

 Greater clarity in the process of derivation of “characteristic values” is desired.  
 There is a perceived need to develop and improve serviceability limit state design. 

 
The results of the survey were interesting, but the number of respondents was small (average 14) and 
their demographics are unknown. A future survey could usefully overcome these two obstacles. While 
this might partly be achieved by the members of the TC being more proactive in encouraging 
responses, that would also introduce bias into the results, so it is desirable that CAPG somehow find a 
way of increasing the uptake of a survey of this type. 

TC205 provides a point of contact between people currently working in both SoA and SoP, both 
of which are under active development. The biggest gap is probably between academics working on 
reliability methods and practitioners who, as indicated by the survey, are cautious about adopting such 
methods. 
 

10.4 SOIL/ROCK PROPERTIES 

Jianye Ching, jyching@gmail.com 
 

10.4.1 Generic versus site-specific transformation model 
 
An engineering practice exercised by practitioners for years is to estimate the design parameter (such 
as the friction angle of a sand) using transformation models. In spite of their popularity, 
transformation models are frequently criticized because they are constructed by non-site-specific data 
and may not be applicable to a specific site. However, if we narrow down to a specific site, there are 
insufficient data points to construct the transformation model. A dilemma exists here: a generic model 
is not plausible, yet a site-specific model is not feasible. Does there exist an intermediate 
transformation model that is neither 100% generic nor 100% site-specific, but is far more plausible 
than a generic model and far more feasible than a site-specific model? I believe that developing such 
intermediate transformation models is an important future research direction. 
 

10.4.2 Rock engineering 
 
We have not explored much about rock properties and the related transformation models. Rock 
properties seem to be more variable and less predictable than soil properties. I believe that developing 
rock databases and derive probabilistic transformation models for rocks are important future research 
directions. 
 

10.4.3 Web-based software and app 
 
It is important to get practitioners involved in the subject of “transformation models and soil/rock 
databases”. Without practitioners’ broader involvement and feedbacks, the true usefulness and true 
limitations of these models will never be explored. It is now timely to develop web-based software or 
app for practitioners to use. Researchers should communicate with practitioners during the 
development process to understand practitioners’ needs, and practitioners should feedback with their 
concerns. It will be great if the software or app can serve as an interface with which practitioners can 
upload their soil/rock data points to broaden the coverage of the soil/rock databases. Some screening 
mechanisms are needed for this purpose to prevent problematic data points. 
 

10.5 CHARACTERISTIC VALUE 

Yu Wang, yuwang@cityu.edu.hk 
 
How to use statistical method to facilitate the selection of geotechnical property design profile (e.g. 
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characteristic value profile for soil properties) when a reasonable number of data points along depths 
are available from site characterization? The current engineering practice relies heavily on 
engineering judgement, which is subjective and may be different for different individuals. Because of 
this subjective selection and individual judgment, the characteristic value profile, derived by different 
geotechnical engineers even from the same dataset, may vary greatly, especially when the test data 
contains significant variability. For example, Bond and Harris (2008) asked different geotechnical 
engineers to assess the characteristic parameter values of London and Lambeth clays from the results 
of Standard Penetration Tests (SPTs) carried out in these soils (Orr 2017). The characteristic SPT 
value profiles selected by the different engineers are shown in Figure 10-1 by solid lines. The wide 
spread of solid lines in Figure 10-1 demonstrates effect of subjective judgment on the selected 
characteristic value profile and highlights the need of objective methods for selection of characteristic 
value profile. 
 

 
 

Figure 10-1 Illustrative example of engineers’ interpretations of characteristic value profile (Bond and 
Harris 2008; Orr 2017) 

 
Table 10-1 provides the original data for Figure 10-1 (Bond 2017). Interested readers are 

welcome to use the original data to interpret their own characteristic value profile. 



Joint	TC205/TC304	Working	Group	on	“Discussion	of	statistical/reliability	methods	for	Eurocodes”	
–	Final	Report	(Sep	2017)	

199 
 

Table 10-1 Original data for Figure 10-1 (Bond 2017) 
Level (mOD) SPT (N) Level (mOD) SPT (N) Level (mOD) SPT (N) 

11.25 18 -5.55 29 -10.15 34 
9.25 18 -8.55 34 -13.15 41 
7.25 25 -11.55 36 -16.15 39 
4.25 27 -14.55 39 -18.15 44 
1.25 28 -17.55 42 8.45 15 
-1.75 26 10.5 12 7.3 16 
-4.75 32 8.5 13 4.7 25 
-7.75 46 6.5 17 1.3 22 

-10.75 40 4 24 -1.7 26 
-13.75 46 1 26 -4.7 29 
-16.75 44 -2 27 -7.7 33 

9.5 21 -5 32 -10.7 32 
7.25 27 -8 35 -13.7 38 
4.25 27 -11 34 -16.7 35 
1.25 31 -14 34 -19.7 51 
-1.75 37 -17 37 9.85 11 
-4.75 34 -19 39 7.85 13 
-6.75 38 12 10 5.35 19 

-12.75 47 10 13 2.35 25 
-15.75 47 8 19 -0.65 27 
11.15 19 6 27 -3.65 31 
9.15 17 3 29 -6.65 31 
6.65 25 0 27 -9.65 36 
3.65 29 -3 28 -12.65 37 
0.65 31 -6 33 -15.65 45 
-2.35 29 -9 38 -18.15 45 
-5.35 37 -12 44 -20.35 68 
-8.35 47 -15 51 -23.35 71 
-11.35 47 -18 47 -24 100 
-14.35 39 -21 50 -27 52 
-17.35 44 9.35 12 -30 89 
10.45 9 7.35 14 -32.85 100 
8.45 13 4.85 17 -22.7 71 
6.45 15 1.85 20 -25.7 69 
3.45 16 -1.15 25 -28.7 64 
0.45 21 -4.15 28  
-2.55 27 -7.15 31  

 
References 
 
Bond, A. (2017). Personal communication. 
Bond, A., and A. Harris. (2008). Decoding Eurocode 7. London: Taylor and Francis. 
Orr, T. L. L. (2017). Defining and selecting characteristic values of geotechnical parameters for 
designs to Eurocode 7, Georisk: Assessment and Management of Risk for Engineered Systems and 
Geohazards, 11(1), 103-115. 
 
10.6 MONITORING AND DEALING WITH COMPLEX ROCK FORMATIONS 

Giovanna Vessia, g.vessia@unich.it 
 

10.6.1 Geotechnical structure performance against natural hazard 
 
How to check the evolution in time of the geotechnical structure performances based on both 
monitoring data and failure predictions represents a challenging issue to be addressed in the future. 
Dams, infrastructures and buildings set in hazardous territories (threaten by Natural hazards) must be 



Joint	TC205/TC304	Working	Group	on	“Discussion	of	statistical/reliability	methods	for	Eurocodes”	
–	Final	Report	(Sep	2017)	

200 
 

monitored for public safety and the temporal datasets collected must be used to predict soil-structure 
interaction in order to prevent unpredicted failures. To this end, not only the structural integrity must 
be checked but also soil parameters and their spatial changes in values must be re-evaluated through 
deterministic and statistical approaches based on proper monitoring datasets (e.g. the strain gauge 
measures within an earth dam) or investigation campaigns performed before and after the natural 
event (e.g. earthquakes, floods). 
 

10.6.2. Rock-soil engineering 
 
The evaluation of the quality of rock masses and their stability (within the mass in tunnel engineering 
or on its front in rock slope instability) is nowadays based on classification criteria (like Beniawsky, 
Burton and GSI classification) and numerical simulations. They are developed for hard and weak rock 
masses but not for those complex formations (such as flysch rocky-soil deposits) that show a high 
spatial variability in soil and rock distribution and properties. Try to find out effective numerical and 
statistical tools to dealing with (1) mechanical characterization and (2) failure predictions of complex 
formations in addition to engineering judgement and monitoring activities should be tackled in the 
future. 
 

10.7 CLOSING THE GAP BETWEEN RESEARCH AND PRACTICE 

Kerstin Lesny, kerstin.lesny@hcu-hamburg.de 
 
To my opinion, one of the biggest challenges still is to close the gap between theoretically based, 
complex approaches as provided by RBD and the design practice applied by the ‘normal’ geotechnical 
engineer who is usually not familiar with probabilistic methods of any kind. Maybe, we can also say 
to provide a bridge or a link between the different ‘languages speaking’ or different ‘ways of thinking’ 
of the different parties. One may argue that the application of RBD in practical design has moved a 
big step forward as there are meanwhile tools or methods available which can be easily applied. This 
may be correct, but the question remains for whom it is easy - for those, who are familiar with it 
anyhow or also for those which do not have any experience? People need to understand and they need 
to be convinced about the benefits of a new method compared to the usual one. They have to be 
provided with good arguments, realistic assessments, and illustrative examples (simple, but probably 
not too simple to be unrealistic). 

I'm writing this with the background of the ongoing evolution of Eurocode 7. At least in 
Germany there is a quite strong opposition especially in the construction industry and the consultancy 
against any complication of the current EC7 version. 

 

10.8 SENSITIVITY ANALYSIS BY USING IMPRECISE PROBABILISTIC AND 

INTERVAL APPROACHES 

Sónia H. Marques, sonia.h@fe.up.pt 
 

EN 1997, adopted as Eurocode 7, is intended to be applied to the geotechnical aspects of the design of 
civil engineering works. The limit state design concept adopted by Eurocode 7 is used in conjunction 
with a partial factor methodology. The selection of appropriate partial factors is important to ensure 
the reliability of geotechnical design to Eurocode 7, as design values are determined by applying 
partial factors to characteristic values. When the partial factor format is first introduced, it should 
preferably produce a design comparable to the resultant from the safety factor methodology, 
promoting the continuity of past experience. Actually, the partial factor format through the Design 
Approach DA.2* is based on a modified global safety concept, noted that different systems associated 
to the same factor may have a different probability of failure due to the fact that important variabilities 
are disregarded. At the present, the performance of a partial factor format is measured by the ability to 
produce a design achieving a desired target reliability within acceptable margin of error. To achieve 
the required target reliability, Eurocode 7 does not provide any variation in the partial factors but 
rather requires that greater attention is given to other accompanying measures related to design 
supervision and inspection differentiation by a system of failure control. The issue of adopting 
multiple resistance partial factors in geotechnical design is then on discussion. At a glance, multiple 
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resistance partial factors should be clearly related to the determination of characteristic values, 
primary cause of inconsistent reliability evaluations. Considered the underlying motivation on the 
endeavour for safety, approaches to robust design are nowadays discussed on the calculation of 
resistance factors capable to maintain a more uniform reliability level over a range of design 
parameters. As information is not certain but rather imprecise, a sensitivity analysis may be pursued 
through probabilistic grid-based and fuzzy-based approaches on multiple intervals. Thereby, the 
imprecise probability theory emerges as a basis for decision-making when providing the investigation 
of the most plausible models. The key feature concerns on the identification of probability bounds for 
scenarios of interest which reflect the uncertainty as the range between the limits. The imprecise 
probabilistic analysis is then a supplementary element which enriches the variety of models to be 
combined with the traditional overview in improved adaptability. These models may include interval 
and fuzzy probabilities in association to a probability box structure constructed from search amid the 
competing models. The admissibility of imprecision in beliefs is the primary difference in motivation 
between imprecise probabilistic and robust Bayesian approaches, beliefs are imprecise or there exists 
a prior that captures the true beliefs, although it may be hard to identify this distribution. Imprecise 
probabilistic approaches are robust whenever insensitive to small deviations from the assumed 
probabilistic models. One motivation for adopting imprecise probabilistic approaches consists on the 
safety evaluation in the scope of the shear strength parametric change by weathering on real world 
problems such as the probabilistic interpretation of mine pillar capacity. On the imprecise 
probabilistic approaches multiple resistance partial factors may be clearly related to the determination 
of characteristic values. Expressed simply by intervals, geotechnical parameters on scarce 
probabilistic information are assigned based on experience. A meaningful interpretation on a high 
dimensional space is based on the joint analysis of multiple cases instead of a lower and upper 
probabilistic evaluation. The limit state imprecise probabilistic analysis may be interpreted altogether 
with a limit state imprecise interval analysis. This sensitivity analysis may provide meaningful results 
for safety-based decision in ground investigation and testing or improvement and the partial factor 
design may be discussed on the basis of distinct levels of credibility.  

 

10.9 ROBUSTNESS 

Brian Simpson, Brian.Simpson@Arup.com 
 

Actual probabilities of failure are of importance to society at large, including the general public, 
governments and insurers. A notional probability of failure or reliability index does not provide this 
function, especially if, as is widely believed, actual failures are most often caused by events and actions 
outside the range of the anticipated variations of leading variables – loads, strengths etc. 

Robustness relates to the provision in design for unforeseen events and actions, including human 
error, of a magnitude that society would expect the construction to withstand without becoming 
dangerous. In the design process, the uncertainty of the leading variables is obvious, but 
over-concentration on these can distract from the need to provide a margin of safety that could 
accommodate the unexpected. 

Correlation with past practice plays a significant role in determining the values given to partial 
factors, so it is likely that they provide a degree of robustness that is acceptable to society. It is important 
that this topic should be addressed in the development of reliability methods if they are to give a 
meaningful indication of actual probabilities of failure. 

 

10.10 MACHINE LEARNING 

He-Qing Mu, cthqmu@scut.edu.cn 
 
Machine learning can be defined as a set of methods for data pattern recognition, future data prediction 
and decision-making under uncertainty [1]. The fields of machine learning and pattern recognition have 
undergone substantial development over the past decades. It is known that many problems in civil and 
geotechnical engineering are associated with significant levels of uncertainty. Thus, providing a 
rigorous solution for uncertainty quantification is necessary when applying the machine learning 
techniques to inference problems in civil and geotechnical engineering. In particular, Bayesian-based 
machine learning, which is a systematic inference, prediction and decision-making framework 
embedding the advantages of both probabilistic reasoning and pattern recognition, has become 
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increasingly popular. Recently, sparse Bayesian learning methods have been applied to civil [2] and 
geotechnical engineering [3] problems. However, it is accurate to say that the power of these methods 
have yet to be appreciated in the mainstream geotechnical reliability literature. One can imagine 
geotechnical engineering practice being transformed by the combination of machine learning and the 
Internet of Things to support decision making in the face of uncertainty in real time as discussed in the 
Minutes for 25th ISSMGE TC304 Meeting on 4 June 2017.  
 
1. Bishop, C. M. (2006). Pattern recognition and machine learning. Springer. 
2. Mu, H. Q., & Yuen, K. V. (2017). Novel Sparse Bayesian Learning and Its Application to Ground 
Motion Pattern Recognition. Journal of Computing in Civil Engineering, 31(5), 04017031. 
3. Ching, J., & Phoon, K. K. (2017). Characterizing uncertain site-specific trend function by sparse 
Bayesian learning. Journal of Engineering Mechanics, 143(7), 04017028. 
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