
Annex 3 (by G. Vessia): 

Existing works on model uncertainty evaluation for shallow foundation settlement 
prediction on sandy soils and a new proposal 

The estimation of the model uncertainty in the calculation of shallow foundation settlements 
on sandy soils was first addressed by Terzaghi and Peck (1967) that posed that density and 
compressibility of sandy deposits is often that erratic to be unrealistic to imagine that any 
method would be capable of estimating actual settlements of footings. Terzaghi and Peck 
(1967) suggested that, if several identical footings, all equally loaded, were built on the same 
sand deposit, the ratio between the upper bound and the lower bound of the estimated 
settlements will be likely to get to 2 or higher values.  

Starting from the preceding considerations, the model uncertainty is considered as one value 
including other sources of uncertainties like (Uzielli and Mayne 2012): 

1) inherent complexity and uniqueness of geomaterials, foundations and their functional 
interaction; 

2) the epistemic uncertainty related to imperfect measurement of the soil-foundation system; 

3) the transformation uncertainty in the load-displacement model itself. 

A few authors devoted explicit efforts to calculate the model uncertainty in settlement 
predictions on sandy soils. 

Tan and Duncan (1988) introduced the ratio R obtained as calculated settlements Scalc divided 
by measured settlements Smis: 

misS
calcS

R =              (1) 

Thus databases of R values can be collected. Nevertheless some statistics are needed to rank 
the magnitude of model uncertainty of several settlement prediction equations for sandy soils 
Scalc.    

Then, Tan and Duncan (1988)  introduced two quantities, namely Accuracy and Reliability. 
They defined the accuracy as the average value of this ratio for all the cases in the database. 
A value of this average equal to unity represents the best possible accuracy. 

The reliability is defined as the percentage of the cases for which R is equal or greater than 1. 
Perfect reliability is equal to 100. Finally they used adjustment factors to rank the model 
uncertainty as a list of ranks from the most to the less efficient  settlement prediction 
equations. 

In the same period, Briaud and Tucker (1988) introduced a concise index that took into 
account accuracy and precision, namely “Ranking Index” RI: 

( )[ ] ( )[ ]RlnsRlnRI +µ=         (2) 



where µ and s are the mean and the standard deviation of R. The precision represents the 
dispersion of R values about its mean and the accuracy measures the greater or smaller 
closeness of a set of measures to the real value. This latter is an indicator of the central trend, 
as the mean. Later on, Cherubini and Orr (2000) suggested to use the “Ranking Distance” RD 
instead of the RI: 

( )[ ] ( )[ ]22 RsR1RD +µ−=         (3) 

Plotting RD on a Cartesian plane it provides with a geometrical interpretation of the best 
combination between accuracy and precision among many possible R values (as shown in 
Figure 1).  

Afterwards, Cherubini and Vessia (2009) studied the model uncertainty R of 9 settlement 
prediction equations for sandy soils that used NSPT measures. The Smis measured settlements 
used for calculating R values (Eq. 1) come from Burland and Burbidge (1985) database of 
192 values from full-scale shallow foundations of several dimensions set in several sandy 
soils. Thus for each equation 192 R values have been calculated and 9 R samples have been 
collected whose statistics have been calculated.  

As the settlement prediction equations are concerned, the chosen 9 equations are introduced 
below (all the references can be found in Cherubini and Vessia 2009), according to the 
following notations: 

-B(m) least width of a rectangular foundation or diameter of a circular foundation; 

-D(m) depth of footing embedment below ground surface; 

-E(kPa) modulus of soil stiffness; 

-H(m) depth of the incompressible soil; 

-Hs(m) thickness of the compressible layer below the foundation; 

-I influence factor for computing settlement from elasticity theory; 

-q(kPa) net increase of the effective pressure at foundation level; 

-Sc(mm) calculated settlement; 

-NSPT is the number of blow count in the SPT; 

-σ’v0 (kPa) overburden effective pressure at depth z. 

 

• Terzaghi & Peck (1948) 
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where the depth coefficient Cd is assumed to be 1 and for D=0, 0.75 for D≥B (Jorden, 1977), 
for 0<D<B it is linearly interpolated as follows (Pasqualini, 1983): 
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The water table coefficient, Cw, is assumed equal to 1 for Dw≥2B, to 2 for Dw≤0, for 
0<Dw<2B it is linearly interpolated as follows: 











−

≥
≤

=

otherwise
B

D
5.02

B2Dif1
0Dif2

maxC
w

w

w

d   

 

• Meyerhof (1965) 
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where Cd has the same meaning as in Terzaghi and Peck’s method (1948). 

 

• Meigh and Hobbs (1975) 
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where for Cd the authors refer to Terzaghi and Peck’s method and the ratio qc/NSPT depends 
on the grain-size distribution of soil. 

 

  



• Arnold (1980) 
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Hs being the depth of the compressible layer below the foundation (in m): 

 

( )DH,B2minHs −=     
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RD0002134.0032766.0 −=α   
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where DR is the relative density, given by: 
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This expression is valid for NSPT≥6 and 45%≤DR≤100%. 

 

•  Burland and Burbidge (1985) 
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Where qgross is the gross bearing pressure at foundation level (kPa), Z is the depth of influence 
for NSPT averaging that is (NSPT)AV. If NSPT values decrease with depth, Z is equal to 2B, 
otherwise it is calculated by the following interpolating equation: 

779.0B933.0Z =     

 

• Anagnostopoulos, Papadopoulos and Kavvadas (1991) 

 

These authors suggest two settlement formulas: 

 

Formula1:  
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Formula2:  
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• Schultze and Sherif (1973) 

 

Starting from the general formula for predicted settlement by means of the elasticity equation: 
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This expression is obtained by numerical integration of Boussinesq solution for circular 
footing whereas for rectangular footing the influence factor I by Steinbrenner’s method 
(1934) is introduced. The stiffness modulus E (in kPa) is given by: 
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• Berardi and Lancellotta (1991) 

 

As the preceding authors do, Berardi and Lancellotta start from the elasticity equation for 
settlement: 

 

I
E

qBSc =            (I-9) 

 

but calculate each term differently from the previous authors. As a matter of fact, the 
influence factor I has been calculated by numerical integration of Boussinesq solution 
considering rigid footing. The stiffness modulus, E, is given by: 
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where pa is the reference pressure and KE is initially evaluated as: 
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Once the settlement has been calculated, KE is corrected through the equation: 
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and the predicted settlement is recalculated using KE,corr instead of KE. 

 



 

Figure 1.  Plane showing both mean values (on the x axis) and standard deviations (on the y axis) of R for the 
nine settlement formulas. 

Cherubini and Vessia (2009) suggested a procedure to rank the 9 R samples of model 
uncertainty through the use of four indexes:  

1) Precision 

2) Accuracy 

3) Entropy  

4) Relative entropy 

The first two indexes can be combined into the Ranking distance and plotted as shown in 
Figure 1.  

Entropy (Shannon 1948) and relative entropy (Kinsley 1983), like the variance, are measures 
of the dispersion according to the following expressions, respectively:  
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where Pi is the probability value associated with the calculated R value.  

 

The procedure consists on: 

(1) calculating the RD, whose ideal value is 0;  



(2) calculating the relative entropy by Eq. (5) whose ideal value is about 0.  

(3) ranking the  equations according the calculated values of RD and Hr.  

The final aim of the proposed procedure, that can be extended to a larger number of 
equations, is to provide a quick tool for designing. In fact, curves of different levels of 
probability for settlement target values can be drawn through several formulas. Hereafter just 
to provide with an example, three curves have been calculated for three formulas, that are: 
two by Anagnostopoulos et al. (1991), named APK1 and APK2 and one by Schultze and 
Sherif (1973), named SS. The preceding equations are the most precise formulas among the 
nine considered by Cherubini and Vessia (2009) according to the available full-scale data by 
Burland and Burbidge’s settlement database.  

As far as the values of the shallow foundation settlements are concerned, Eurocode 7 (BS 
2004, updated 2013) suggests an upper limit equal to 50mm to be accepted. Nevertheless, the 
preceding value refers to common buildings with no complex structures. In practice, 
settlements can be accepted if they do not cause both static and functional problems to 
structures and services. Thus, five values of settlements are hereafter considered as 
acceptable: 5, 15, 25, 35 and 45mm. The exceeding probability curves are related to three 
samples of R that are normally distributed. The curves are drawn according to the following 
expression: 
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This expression shows that the probability that a settlement value is higher than the 
corresponding measured one is equal to the probability that any value of R is lower than a 
fixed value of R (5, 15, 25, 35 and 45). Figures 2-4 show the probability curves calculated 
through APK1, APK2 and SS. 

 



 

Figure 2.  Normal-distribution probability curves corresponding to different values of acceptable settlements 
calculated by APK1 formula. 

 

 

Figure 3.  Normal-distribution probability curves corresponding to different values of acceptable settlements 
calculated by APK2 formula. 

 



 

Figure 4.  Normal-distribution probability curves corresponding to different values of acceptable settlements 
calculated by SS formula. 

 

The values corresponding to the probability of exceedance can be obtained from these 
settlement probability curves. For example, considering that a 30mm settlement has been 
estimated by means of the SS formula, Figure 4 shows that there is a 30% probability that the 
actual settlement under footing will be more than 45mm, that is to say the probability of 
calculating settlements below 45mm will be 70%. Similarly, there will be a 15% probability 
that the settlement is below 15mm, i.e. an 85% probability that the settlement is more than 
15mm. For all three formulas the exceeding probability curves for values of settlements 
occurring between the curves plotted on the graph will be obtained by interpolating the values 
of probability for the two curves which mark the range.     

These probability charts let the engineer know the probability that a certain value of the 
settlement measured is exceeded provided that the settlement value is known, i.e. they provide 
the conditioned probability of the settlements measured: 

 






 => sSSSP calcmis          (7) 

 

where Scalc and Smis are the calculated and measured settlements, respectively; s  and S  are the 
values of their respective settlements. So the conditioned probability in terms of not-
exceedance will be the following: 
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Therefore, as a result of a reliability-based design in terms of settlements (calculated by 
means of one of the three formulas APK1, APK2 and SS), the probability that the actual 
settlement of the footing does not exceed a given value can be easily got by the conditioned 
probability theorem: 
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where the first term comes from the probability charts (Figures 2-4) while the second one 
derives from the reliability-based design. In fact, if the settlements are estimated by the SS 
formula, and the probability of not exceedance of a 20mm settlement is equal to 10-4, the 
probability that the settlement actually measured is below 25mm will be easily got from 
Figure 4: 

 

( ) ( ) 44 1054.01046.012025 −− ⋅=⋅−=≤< SScalcmis mmSmmSP      (10) 

 

If the two other formulas are used to estimate settlements the following results will be 
calculated: 

( ) ( ) 44
1 1058.01042.012025 −− ⋅=⋅−=≤< APKcalcmis mmSmmSP     (11) 

 

( ) ( ) 44
2 1050.01050.012025 −− ⋅=⋅−=≤< APKcalcmis mmSmmSP     (12) 
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