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INTRODUCTION 

Geotechnical materials are natural materials. Their properties are affected by various factors in natural 

geological processes, such as parent materials, weathering and erosion processes, transportation 

agents, conditions of sedimentation, etc. (e.g., Mitchell and Soga, 2005). These factors vary spatially 

from one location to another, which subsequently lead to inherent spatial variability (ISV) of 

geotechnical properties (Vanmarcke, 2010). ISV has been considered as a major source of 

uncertainties in soil properties (e.g., Christian et al., 1994; Kulhawy, 1996; Phoon and Kulhawy, 

1999a; Baecher and Christian, 2003; Wang et al., 2016). It significantly affects the safety (measured 

by factor of safety, FS) and reliability (measured by probability of failure, Pf, or reliability index, ) 

of geotechnical structures, such as foundations (e.g., Fenton and Griffiths, 2002, 2003 and 2007; 

Wang and Cao, 2013; Li et al., 2015a), retaining structures (e.g., Fenton and Griffiths, 2005), and 

slopes (e.g., Griffith and Fenton, 2004, 2009; Huang et al., 2010; Wang et al., 2011; Li et al., 2014; 

Jiang et al., 2014; Li et al., 2016a; Xiao et al., 2016). ISV shall, hence, be rationally taken into account 

in geotechnical designs, which constitutes a major difference in reliability-based designs (RBD) of 

geotechnical structures and building structures.  

 

ISV can be explicitly modeled in geotechnical RBD using random field theory (Vanmarcke, 2010). 

Figure 1 shows major steps for incorporating ISV in geotechnical RBD based on random field theory. 

In general, it starts with probabilistic characterization of ISV based on site investigation data (e.g., 

in-situ/laboratory test results) and site information available prior to the project (namely prior 

knowledge), which determines statistical information of geotechnical design parameters, including 

spatial trend, statistics (e.g., mean and standard deviation), and correlation functions. Such 

information is needed as input for modeling ISV in geotechnical RBD, which represents or simulates 

ISV of geotechnical design parameters using random fields with pre-defined statistical information. 

Here, the authors need to emphasize that this report focuses on modeling ISV in geotechnical RBD 

based on known/assumed statistical information of geotechnical parameters, and will not discuss 

probabilistic characterization of ISV, i.e., how to derive statistical information from site investigation 

data and prior knowledge. Relevant studies on probabilistic characterization of ISV of geotechnical 

parameters are referred to DeGroot and Baecher (1993), Jaksa (1995), Fenton et al. (1999a,b), Uzielli  
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Figure 1 Incorporating spatial variability into geotechnical RBD based on random field theory. 

 

et al. (2005), Wang et al., (2010), Dasaka and Zhang (2012), Stuedlein et al. (2012), Cao and Wang 

(2013, 2014), Firouzianbandpey et al. (2014, 2015), Ching et al., (2015), Cao et al., (2016), Wang et 

al. (2016), and Tian et al. (2016). 

 

Based on random field theory, there are generally two ways to model ISV in geotechnical RBD, which 

are named as decoupled (D)-method and coupled (C)-method in this report. As shown in Figure 1, D-

method directly simulates random fields of geotechnical design parameters based on their statistical 

information derived from site investigation without considering influence zones and/or critical slip 

surfaces that affect responses (e.g., resistance moment, bearing capacity, and settlement, etc.) of 

geotechnical structures concerned. With the D-method, a number of random field realizations of 

geotechnical parameters can be directly generated under a full-probabilistic RBD framework using 

Monte Carlo simulation (MCS) (e.g., Cao et al., 2013; Wang and Cao, 2013; Cao and Wang, 2014; 

Li et al., 2016b). Then, each random field realization is used as input of deterministic geotechnical 

model to predict responses of geotechnical structures concerned in design. By this means, ISV 

modeling is deliberately decoupled from deterministic analyses of geotechnical structures. This 

provides flexibility in choosing different deterministic geotechnical models (e.g., limit equilibrium 
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method and finite element method) and allows searching for critical slip surfaces and determining 

influences zones of soil masses affecting responses of geotechnical structures. For example, D-

method is applied in random finite element method to model ISV for geotechnical probabilistic 

analysis and risk assessment (e.g., Griffith and Fenton, 2004, 2009; Huang et al., 2010, 2013; Li et 

al., 2016a, Xiao et al., 2016), in which ISV modeling does not involve information on geotechnical 

failure mechanisms or influence zones.  

 

In contrast, C-method uses random field theory to calculate statistics of spatial averages of 

geotechnical design parameters within influence zones and/or along critical slip surfaces affecting 

responses of geotechnical structures (Vanmarcke, 1977; El-Ramly et al., 2002, 2005; Zhang and Chen, 

2012; Wang and Cao, 2013). The spatial average of geotechnical design parameters over a spatial 

curve (e.g., slip surfaces) or area (e.g., influence zones) has the same mean as geotechnical design 

parameters at a “point” that is directly simulated in D-method, but its variance is reduced due to 

spatial averaging. The extent of reduction in variance is quantified by variance reduction function 2 

that is defined as a ratio of the variance of the spatial average over the variance of geotechnical design 

parameters at a “point” (Vanmarcke, 2010). Calculating 2 requires geometric information (e.g., 

location and length) of influence zones and/or critical slip surfaces. Such information is, however, 

unknown prior to geotechnical deterministic analyses and shall be assumed for calculating statistics 

of spatial averages of geotechnical design parameters in C-method. Hence, using C-method in 

geotechnical RBD, ISV modeling is coupled with geotechnical deterministic analyses. After statistics 

of spatial averages of geotechnical design parameters are calculated, they can either be used to 

determine characteristic values of geotechnical design parameters for semi-probabilistic RBD 

approaches (e.g., Eurocode 7 (Orr, 2015)) or be applied to simulating spatial averages within pre-

defined influence zones and/or along assumed critical failure surfaces under a full-probabilistic RBD 

framework (El-Ramly, 2002, 2006; Wang and Cao, 2013).   

 

C-method uses spatial averages of geotechnical design parameters as their corresponding estimates 

along critical slip surfaces or within influence zones. However, the spatial average might not be the 

same as “mobilized” values of geotechnical parameters that control responses of geotechnical 

structures concerned in designs, which has been demonstrated under simple stress states (e.g., Ching 

and Phoon, 2012, 2013; Ching et al., 2014). Hence, compared with direct and rigorous modeling of 

ISV using D-method, C-method is an indirect and approximate way to model ISV in geotechnical 

RBD. How such an indirect and approximate modeling of ISV affects RBD of real geotechnical 

structures is unclear. This issue is systematically explored for different geotechnical structures, 

including drilled shaft, sheet pile wall, and soil slope, in this report. In addition, 2 is needed for 

implementing C-method. It can be calculated exactly according to correlation functions of 

geotechnical design parameters, or be evaluated approximately by a simplified formulation to bypass 

the need of determining correlation functions. This report will also discuss effects of different ways 

to calculate 2 on geotechnical RBD.  
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PROBABILISTIC MODELING OF SPATIAL VARIABILITY IN GEOTECHNICAL RBD 

As shown in Figure 1, both D-method and C-method can be applied to modeling ISV in full-

probabilistic RBD approach using MCS. To enable a consistent comparison, this report adopts a 

recently developed MCS-based RBD approach, so-called the expanded RBD approach, to perform 

RBD of geotechnical structures with D-method and C-method, respectively. The expanded RBD 

approach formulates the design process as a systematic sensitivity analysis on possible designs in 

design space (e.g., a possible range of drilled shaft length) defined by geotechnical engineers, in 

which Pf values of all the possible designs are calculated by a single run of MCS. Then, the final 

design is determined according to target reliability levels and economic requirement. Details of 

algorithms and implementation procedures of the expanded RBD approach are referred to Wang 

(2011), Wang et al. (2011), Wang and Cao (2013, 2015), and Li et al. (2016b).  

 

The expanded RBD approach provides flexibility of modeling ISV in different ways for geotechnical 

RBD, such as D-method and C-method. Based on the expanded RBD approach, this report aims to 

preliminarily reveal effects of indirect and approximate ISV modeling through C-method on 

geotechnical RBD and probabilistic analysis by comparing respective RBD results and/or reliability 

estimates (e.g., Pf) that are obtained using D-method and C-method, and to demonstrate effects of 

different ways to calculate 2. For the illustration and simplification, only one-dimensional (1-D) ISV 

of geotechnical parameters is considered in this report. The following two subsections describe 1-D 

ISV modeling using D-method and C-method, respectively.  

 

Decoupled modeling by random field simulation (D-method) 

D-method models ISV of geotechnical parameters in a direct and explicit manner. Consider, for 

example, a geotechnical design parameter X (e.g., effective friction angle ') in a statistically 

homogenous soil layer. As shown in Figure 2, the ISV of X with depth (or in some direction) can be 

characterized by a 1-D homogenous lognormal random field X(zi), in which zi is a spatial coordinate 

(e.g., depth in the vertical direction) of the i-th location and X is a lognormal random variable with a 

mean  and standard deviation  (or coefficient of variation COVX = /). In the context of random 

fields, the spatial correlation between variations of X at different locations is characterized by the 

scale of fluctuation and correlation function (Vanmarcke, 1977 and 2010). Here, the correlation 

function is taken as a single exponential correlation function, and the correlation coefficient ij 

between the logarithms [e.g., lnX(zi) and lnX(zj)] of X at i-th and j-th locations is given by: 

)/|D|2exp(
jiij  ，                (1) 

where  = scale of fluctuation; |Di,j| = the distance between i-th and j-th locations. For a given set 

of statistics (including , , and ) and correlation function, the statistically homogenous random 

field X of X can be generated using various simulation techniques, such as correlation matrix 

decomposition (e.g., Wang et al., 2011; Li et al., 2015b, 2016a), local average subdivision (e.g.,  
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Figure 2 Illustration of 1-D spatial variability. 

 

Fenton and Vanmarcke 1990; Fenton and Griffiths, 2008), Karhunen-Loève expansion (e.g., Phoon 

et al. 2002; Cho 2010; Jiang et al. 2015), expansion optimal linear estimation (e.g., Li and Der 

Kiureghian, 1993; Xiao et al., 2016). Consider, for example, using the covariance matrix 

decomposition method to simulate X in this report, by which X can be written as: 


T

XlnXln LlXln                (2) 

where 2/ln
X

2

lnXln   and ])/(1ln[ 2

XXXln   are the mean and standard deviation of 

the logarithm (i.e., lnX) of X, respectively; l = a vector with Nt components that are all equal to one; 

 =[ 1 ,…, 
Nt ]T = a standard Gaussian vector with Nt independent components; L = a Nt -by- Nt 

upper-triangular matrix obtained by Cholesky decomposition of the correlation matrix R  satisfying 

LLR
T

                  (3) 

and the (i, j)-th entry of R  is given by the correlation function, e.g., Eq. (1). Using Eqs. (1)-(3), the 

ISV of X is explicitly simulated and is used as input in subsequent deterministic analysis of 

geotechnical structures to evaluate their responses (e.g., resistance moment, bearing capacity, and 

settlement, etc.) concerned in RBD. Note that little information on deterministic model of 

geotechnical structures is involved in Eqs. (1)-(3), making the ISV simulation using D-method be 

decoupled from the geotechnical deterministic analysis.  

 

Coupled modeling by spatial average technique (C-method) 

In C-method, the geotechnical design parameter X over a depth interval (e.g., influence zones) or 

along a spatial curve (e.g., critical slip surface of slope stability) is characterized by a single random 

variable zX   that represents the spatial average of X over the depth interval or along the spatial 
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curve and has a reduced variance due to spatial averaging (e.g., Vanmarcke, 1977; Griffiths and 

Fenton, 2004; Wang and Cao, 2013). Let z  denote the length of the depth interval or the spatial 

curve. Due to the spatial averaging over z , the variance of the equivalent normal random variable 

Xln  of X is reduced, and the variance reduction of Xln  is described by a variance reduction 

function 
2

z  in C-method. For example, 
2

z  for the single exponential correlation function given 

by Eq. (1) is calculated as (Vanmarcke, 2010) 

 2 2[ 2 ] [2 2 1 exp( 2 ) ]z / z z z         （ ）           (4) 

Note that calculation of 
2

z  depends on the correlation function. For exact evaluation of 
2

z , the 

correlation function is hence needed. This is a non-trivial task in geotechnical design practice because 

proper determination of the correlation function requires a large amount of geotechnical data that is 

usually not available at a specific site for routine geotechnical designs. Based on a limited number of 

geotechnical data obtained from site investigation, the most probable correlation function can be 

selected from a pool of candidates using Bayesian approaches (Cao and Wang, 2014, Tian et al., 2016). 

Alternatively, to avoid determining the correlation function, 
2

z  can be approximate as (e.g., 

Vanmarcke, 2010) 












z

z

z/

1
2

z               (5) 

Eq. (5) gives a simplified form of the variance reduction function to conveniently calculate the 

variance reduction factor for various correlation structures, and it is valid for different correlation 

functions (Vanmarcke, 1977). Using Eq. (5) in C-method avoids determining the correlation function 

of geotechnical parameters. It is widely used in geotechnical literature (e.g., Vanmarcke, 1977; Phoon 

and Kulhawy, 1999b; El-Ramly et al., 2002; Wang and Cao, 2013). Figure 3 shows variance reduction 

functions given by Eqs. (4) and (5) by a solid line and a dashed line, respectively. The difference 

between the two variance functions is also plotted in Figure 3 by a dotted line. It is shown that the 

difference increases as z/ increases from 0 to 1 and then decreases as z/ increases further. The 

maximum difference occurs as z/ = 1. Effects of using the approximate variance reduction function 

on geotechnical designs will be discussed later in this report.  

 

Moreover, the geotechnical deterministic model may involve more than one spatial average of X over 

different sections (e.g., two depth intervals), which are spatially correlated. Let 1z  and 2z  

denote the respective lengths of spatial average sections. When using C-method to model 1-D ISV,  
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Figure 3 Comparison of variance reduction functions given by Eqs. (4) and (5). 

 

the spatial correlation between spatial averages of X over 1z  and 2z  is calculated as:  
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where z0 = separation distance between the two spatial average sections; z1= the distance from the 

beginning of the first section to the beginning of the second section; z12 = the distance from the 

beginning of the first section to the end of the second section; and z2 = the distance from the end of 

the first section to the end of the second section. 2

z0
 , 2

z1
 , 2

z2
 , 2

z12
 , 2

z1 , and 2

z2  = the 

respective variance reduction factors of Xln  due to the spatial averaging over z0, z1, z2, z12, z1 and 

z2, which are illustrated in Figure 1.   

 

Note that Eqs. (4)-(6) need the length of spatial average sections (e.g., influence zones for side 

resistance of drilled shafts and the critical slip surface of slope stability) as input information, which 

depends on geotechnical deterministic models. Determining proper spatial average sections is pivotal 

to calculating the variance reduction function in C-method. Hence, C-method couples the ISV 

modeling and geotechnical deterministic analyses, and it incorporates ISV into geotechnical design 

in an indirect and approximate manner. Effects of using C-method to model ISV on geotechnical 

designs can be evaluated by comparing the design results or reliability estimates (e.g., Pf) that are 

obtained using D-method and C-method, respectively. This is discussed based on three geotechnical 

examples (including a drilled shaft example, a sheet pile wall example, and a soil slope example) in 

the following three sections. 
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(a) Random field simulation of ' 

 

(b) Influence zones for side resistance Qside 

and tip resistance Qtip 

Figure 4 Illustration of spatial variability modeling using D-method (see 4(a)) and C-method (see 

4(b)) in drilled shaft designs 

 

ILLUSTRATIVE EXAMPLE I: DRILLED SHAFT  

To explore effects of indirect and approximate modeling of ISV on foundation designs, this section 

redesigns a drilled shaft example using the expanded RBD approach together with D-method and C-

method to model ISV, respectively. As shown in Figure 4, the drilled shaft is installed in loose sand 

with a total unit weight  = 20.0 kN/m3 and mean effective stress friction angle ' = 32º. The shaft is 

assumed to fail in drained general shear under a design compression load F50 = 800 kN with an 

allowable displacement ya = 25 mm. The key design parameters in this example are the drilled shaft 

diameter B and depth D, which are required to support the design compression load and to have a 

shaft displacement less than 25 mm.  

 

The expanded RBD approach is used to determine the minimum feasible design value (i.e., Dmin) of 

D for a given B value. For comparison, D-method and C-method are applied to modeling ISV of ', 

leading to different design results through the expanded RBD approach. In D-method, Eqs. (1)-(3) 

are used to directly simulate the random field of ' in the sand layer (see Figure 4(a)), where  varies 

from 0.2 to 1000m. In contrast, ' in the sand layer surrounding the drilled shaft is modeled by 'side 

and 'tip in C-method, which represent the respective spatial averages of '  over influence zones for 

evaluating side resistance Qside and tip resistance Qtip. As shown in Figure 4(b), the influence zone of 

Qside is taken as the depth interval from ground surface to the tip and its length is equal to shaft depth 

D. The influence zone of Qtip is taken as a depth interval from La (e.g., min{8B,D}) above the tip to 

Lb (e.g., 3.5B) below the tip, and its maximum length is Dmax+3.5B for a given B, where Dmax is the 

maximum possible value of the shaft depth and is taken as 10m in this example. Note that the locations 

and lengths of influence zones for evaluating Qside and Qtip shall be specified in C-method (see Eqs. 

(4)-(6)) prior to the design, which depends on the deterministic analysis model used in design. More 

details of modeling and calculations of the drilled shaft example are referred to Wang and Cao (2013). 
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Figure 5 Comparison of drilled shaft design results using D-method and C-method in expanded 

RBD for B = 1.2m 

Figure 5 shows the variation of Dmin for B = 1.2m obtained using the expanded RBD approach with 

D-method as a function of normalized  by circles. For each value of normalized , Figure 5 also 

includes Dmin values obtained using C-method with the exact form (i.e., Eq. (4)) and the approximate 

form (i.e., Eq. (5)) of variance reduction function by squares and crosses, respectively. The Dmin 

values here are determined according to the target failure probability p
T
 = 0.0047 for serviceability 

limit state, which has been shown to control the design in this example (Wang and Cao, 2013). As 

shown in Figure 5, for a given value of normalized the circle generally plots closely to the squares. 

The results obtained using the C-method with the exact form of variance reduction function agree 

well with those obtained using D-method. This indicates that the spatial average of ' represents 

“mobilized” value of ' over the influence zones for drilled shaft resistance reasonably well in this 

example. Such an observation is further confirmed by comparing the side resistance estimated from 

realizations of ' random field in D-method and their corresponding spatial averages of ' over the 

shaft depth, as shown in Figure 6. 

 

Figure 5 also compares design results obtained from C-method with the exact form (i.e., Eq. (4)) and 

the approximate form (i.e., Eq. (5)) of variance reduction function. As  is smaller than one tenth of 

the maximum length Lmax (i.e., Dmax+3.5B in this example) of influence zone for drilled shaft 

resistance or greater than ten times of Lmax, using Eqs. (4) and (5) gives similar design results. 

However, when  is close to Lmax, there is apparent difference between the two set of design results. 

Such a difference is attributed to approximation in variance reduction function. As shown in Figure 

3, the maximum difference between variance reduction functions given by Eqs. (4) and (5) occurs as 
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Figure 6 Comparison of side resistance calculated from realizations of ' random fields and their 

corresponding spatial averages over influence zones for the design with B = 1.2m and D=5.2m 

 is equal to the length of spatial average interval, e.g., Lmax in this example. Hence, when the length 

of influence zone is close to  adopted in design, the approximate variance reduction function given 

by Eq. (5) shall be used with caution.  

 

ILLUSTRATIVE EXAMPLE II: SHEET PILE WALL 

For further illustration, this section redesigns an embedded sheet pile wall example using the 

expanded RBD approach together with D-method and C-method to model ISV in design, respectively. 

As shown in Figure 7, the embedded sheet pile wall is designed for a 3-m deep excavation, and is 

installed in a sand layer, where the total unit weight of sand is 20 kN/m3 and effective friction angle 

' (i.e., lnX in Eq. (2)) of sand is normally distributed with a mean of 39° and a standard deviation of 

3.9°. The ground water levels are at the ground surface in front of the wall and at the depth of 1.5m 

behind the wall. In addition, the surcharge q behind the wall is considered as a variable load, which 

is normally distributed and has a mean of 8.02 kPa and a standard deviation of 1.20 kPa. The aim of 

the sheet pile wall design example is to find an embedded depth d that satisfies the moment 

equilibrium about point O and to determine an additional embedded depth d by solving the 

horizontal force equilibrium equation (Wang, 2013). For simplification, d is commonly taken as 

0.2d, which often leads to conservative designs (e.g., Craig, 2004; Wang, 2013; Li et al., 2016b). 

Then, the required depth Dspw of the sheet pile wall example is equal as 1.2d, and it ranges from 1m 

to 8m with an increment of 0.1m. For a given Dspw value, d (i.e., Dspw/1.2) and d (i.e., 0.2d) are 

calculated, and the net resistance moment MR about point O provided by passive earth pressure is 

evaluated, as well as the net overturning moment MO resulted from the active pressure acting. After 

that, the FS is obtained, details of which are referred to Craig (2004) and Wang (2013). 
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(a) Random field simulation of ' 
(b) Influence zones for resistance and 

overturning moments 

Figure 7 Illustration of spatial variability modeling using D-method (see 7(a))and C-method (see 

7(b)) in sheet pile wall designs 

 

The expanded RBD approach is used to determine the minimum feasible design value (i.e., Dmin) of 

Dswp. Similar to the drilled shaft design, D-method and C-method are applied to modeling ISV of ' 

in the sand layer in expanded RBD. In D-method, Eqs. (1)-(3) are used to directly simulate the random 

field of ' in the sand layer (see Figure 7(a)), where  varies from 0.2 m to 1000 m. In contrast, ' in 

the sand layer surrounding the sheet pile wall is modeled by 'O and  'R in C-method, which 

represent the respective spatial averages of '  over influence zones for evaluating MO and MR. As 

shown in Figure 7(b), the influence zone of MR is taken as the depth interval from ground surface in 

front of the wall to point O, and its length is equal to d minus over-digging depth(0.3m); the influence 

zone of MO is taken as a depth interval from ground surface behind the wall to point O, and its 

maximum length is dmax+3.0m for a given B, where dmax is the maximum possible value of the 

embedded depth and is taken as 8.0/1.2 = 6.67m in this example. More details of modeling and 

calculations of this drilled shaft design example are referred to Wang and Cao (2013) and Li et al. 

(2016b).  

  

Figure 8 shows the variation of Dmin obtained using the expanded RBD approach with D-method as 

a function of normalized  by circles. For each value of normalized , Figure 8 also includes Dmin 

values obtained using C-method with the exact form (i.e., Eq. (4)) and the approximate form (i.e., 

Eq. (5)) of variance reduction function by squares and crosses, respectively. The Dmin values here are 

determined according to p
T
 = 7.2×10-5 adopted in Eurocode 7(e.g., Orr and Breysse, 2008). As shown 

in Figure 8, for a given value of normalized the circle generally plots closely to the squares. The 

results obtained using C-method with the exact form of the variance reduction function agree well  
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Figure 8 Comparison of sheet pile wall design results using D-method and C-method in expanded 

RBD 

 

 

(a) Resistance moment (MR) 

 

(b) Overturning moment (MO) 

Figure 9 Comparison of resistance and overturning moments estimated from realizations of ' random 

fields and their corresponding spatial averages over influence zones for the design with D=7.9m 

 

with those obtained using D-method. This indicates that spatial averages of ' represents “mobilized” 

values of ' over the influence zones for MR and MO reasonably well in this example. Such an 

observation is further confirmed by comparing MR and MO values estimated from realizations of ' 

random field in D-method with those calculated from their corresponding spatial averages of ' over 

influence zones for MR and MO, as shown in Figures 9(a) and 9(b), respectively.  
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(a) Random field simulation of ' 
 

(b) Influence zone for FS 

Figure 10 Illustration of spatial variability modeling for Lodalen slide using D-method (see 10(a)) 

and C-method (see 10(b)) 

 

Figure 8 also compares design results obtained from C-method with the exact form (i.e., Eq. (4)) and 

the approximate form (i.e., Eq. (5)) of variance reduction function. Similar to the drilled shaft design 

example, when  is close to Lmax, there is apparent difference between the two set of design results 

due to the obvious difference between variance reduction functions calculated from Eqs. (4) and (5) 

at  = Lmax (see Figure 3). This, again, indicates that, as the length of influence zone is close to  

adopted in design, using the approximate variance reduction function given by Eq. (5) in C-method 

may lead to inaccurate design results. Although using Eq. (5) in C-method gives conservative designs 

in the drilled shaft design example (see Figure 5) and the sheet pile design example (see Figure 8) as 

 is close to Lmax, such an observation cannot be generalized, as illustrated using a soil slope example 

in the next section. 

 

ILLUSTRATIVE EXAMPLE III: LODALEN SLIDE 

This section illustrates effects of using different spatial variability modeling methods (i.e., D-method 

and C-method) on the “calculated” reliability (or probability of failure) of slope stability using 

Lodalen slide example. The Lodalen slide occurred in 1954 nearby the Oslo railway station, Norway. 

As shown in Figure 10, the slope has a height of 17m and a slope angle of 26°. The stratigraphy of 

slope is comprised of a marine clay layer underlying a 1-m thick clay crust at the top. The clay crust 

does not significantly affect the stability of the slope (e.g., El-Ramly et al., 2006) and is, hence, not 

shown in Figure 10. The spatial variability of effective cohesion c', friction angle ' and pore water 

pressure u in the marine clay layer is considered in this example, and they have respective mean 

values of 10 kPa, 27.1°, and 0m of water and respective standard deviations of 1.72kPa, 2.21°, and 

0.34m of water (e.g., El-Ramly et al., 2006). The correlation structures of the three parameters are 

considered as identical and are taken as an isotropic single exponential correlation function with a 

scale of fluctuation  ranging from 2m to 5000m. More details of the Lodalen slide and its 

probabilistic assessment (including uncertainty characterization and propagation) are referred to El-

Ramly et al. (2006). 

 

For illustration, D-method and C-method are applied to modeling spatial variability of effective shear  
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Figure 11 Comparison of occurrence probabilities of Lodalen slide using D-method and C-method 

in MCS 

strength parameters (i.e., c' and ') in the marine clay layer. In this example, the spatial variability of 

u is always explicitly simulated as a random field by D-method no matter which method is used to 

modeling spatial variability of c' and '. Using D-method, random fields of c' and ' can be directly 

simulated in the marine clay layer without needs of information on the slip surface of Lodalen slide. 

In contrast, such information is needed for determining the influence zone of sliding resistance of 

Lodalen slope in C-method. For simplicity, the critical slip surface adopted by El-Ramly et al. (2006) 

is considered in this report. Then, c' and ' along the critical slip surface are modeled by c'A and 'A 

in C-method, which represent the respective spatial averages of c' and '  over the critical slip surface 

for evaluating its corresponding FS. The variances of c'A and 'A are calculated using their respective 

variances at the “point” level and the variance reduction function given by Eq. (4) (exact form) or 

Eq.(5) (approximate form), in which the length of spatial average interval is taken as the length of the 

critical slip surface, i.e., about 52m in this example. Using D-method and C-method to model spatial 

variability of c' and ' in the marine clay layer, the occurrence probability Pf of Lodalen slide along 

the prescribed critical slip surface is calculated for different values of  varing from 2m to 5000m.  

 

Figure 11 shows the variation of Pf values obtained using D-method as a function of normalized  by 

circles. For each value of normalized , Figure 11 also includes Pf values obtained using C-method 

with the exact form (i.e., Eq. (4)) and the approximate form (i.e., Eq. (5)) of variance reduction 

function by squares and crosses, respectively. It is shown thatthe circles generally plot closely to the 

squares. The results obtained using the C-method with the exact form of the variance reduction 

function agree well with those obtained using D-method. This indicates that the spatial average of 

effective shear strength of the marine clay represent the “mobilized” value of effective shear strength  
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Figure 12 Comparison of safety factors of Lodalen slope calculated from random fields and spatial 

averages of effective shear strength parameters of the marine clays for  = 50m 

 

over the critical slip surface reasonably well in this example. Similar to previous two examples, such 

an observation is further confirmed by comparing FS values estimated from realizations of c' and ' 

random fields in D-method with those calculated from their corresponding spatial averages over the 

critical slip surface for a given value (e.g., m), as shown in Figure 12.  

 

Figure 11 also compares Pf values obtained from C-method with the exact form (i.e., Eq. (4)) and the 

approximate form (i.e., Eq. (5)) of variance reduction function. When  is close to the length of the 

critical slip surface, the crosses plot below the squares, indicating that using the approximate form 

(i.e., Eq. (5)) of variance reduction function leads to underestimation of Pf at relatively large failure 

probability levels, which is unconservative. Such unconservative results are attributed to 

overestimation of variance reduction function by Eq. (5) and, hence, variance of shear strength 

parameters. This, again, indicates that, as the length of influence zone is close to , Eq. (5) shall be 

used with caution because unconservative reliability estimates might be obtained when it is applied.   

 

SUMMARY AND CONCLUDING REMARKS 

This reports summarized major procedures for modeling spatial variability in geotechnical reliability-

based design, based on which two methods, so-called decoupled (D)-method and coupled (C)-method 

are introduced. D-method directly simulates random fields of geotechnical design parameters without 

considering influence zones and/or critical slip surfaces that affect responses (e.g., resistance moment, 

bearing capacity, and settlement, etc.) of geotechnical structures. With D-method, ISV modeling is 

deliberately decoupled from geotechnical deterministic analyses. In contrast, C-method uses random 
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field theory to calculate statistics of spatial averages of geotechnical design parameters within 

influence zones and/or along critical slip surfaces affecting responses of geotechnical structures. 

Information on influence zones and critical slip surfaces is needed for calculating statistics of the 

spatial average of geotechnical design parameters in C-method. Hence, using C-method in 

geotechnical RBD, ISV modeling is coupled with geotechnical deterministic analyses. Based on D-

method and C-method, Monte Carlo simulation-based approaches (e.g., expanded RBD) is applied to 

explore effects of different spatial variability modeling methods on RBD and probabilistic analysis 

of geotechnical structures, including drilled shaft, sheet pile wall and soil slope. The major 

conclusions drawn from this study are given below:   

 

(1) Using C-method with exact variance reduction function gives design results and reliability 

estimates with satisfactory accuracy provided that reasonable influence zones or critical slip surfaces 

are assumed prior to the analysis. For a given influence zone or critical slip surface, the spatial average 

serves as a reasonable estimate of “mobilized” shear strength parameters for geotechnical RBD and 

probabilistic analysis when 1-D spatial variability is considered. 

 

(2) Compared with using exact form of variance reduction function (e.g., Eq.(4)), using approximate 

form of variance reduction function (e.g., Eq. (5)) in C-methods might lead to conservative or 

unconservative reliability estimates and design results, depending on the failure probability level. As 

the length of spatial average interval is close to the scale of fluctuation, Eq. (5) shall be used with 

particular caution. Note that the effect of the simplified form of variance reduction function can be 

amplified when 2-D and 3-D spatial variability are considered because reductions in variances of 

different dimensions are basically “multiplied”.   

 

(3) Results obtained in this report are preliminary in the sense that failure mechanisms were 

prescribed prior to the analysis in the three examples and only 1-D spatial variability was taken into 

account. This is, however, a good starting point to explore the problems concerned in this report for 

real geotechnical structures, which is beneficial to development of semi-probabilistic geotechnical 

RBD codes, such as Eurocode 7, and to communication with other research communities with limited 

background of geotechnical reliability and risk. More rigorous explorations are also warranted that 

account for effects of different failure mechanisms and 2-D (or 3-D) spatial variability. Some valuable 

attempts have been made in literature (e.g., Ching and Phoon, 2013; Ching et al., 2014, 2016). 
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