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INTRODUCTION 

Transformation models (Phoon and Kulhway 1999) are valuable because they serve as “prior” 

information for correlation behaviors among various soil parameters.  Useful compilations of these 

models are available in the literature (e.g., Djoenaidi 1985; Kulhawy and Mayne 1990; Mayne et al. 

2001).  For instance, it is common to estimate the friction angle () of sand based on its SPT N 

value through a transformation model derived from data points obtained in the literature, as is 

showed in Figure 1.  Here, the SPT N value is the site-specific information, and the friction angle 

 is the design soil parameter, also assumed as site-specific.  However, the SPT N- 
transformation model is not site-specific and is typically developed using a SPT N- database 

collected from the literature.  It is customary to adopt such a transformation model, which is not 

site-specific, in the process of estimating site-specific .  This process is illustrated in Figure 1.  

Suppose that the (N1)60 value (corrected N value) of a sand at certain depth at the design site is 

known to be 25.  A vertical line is drawn at this (N1)60 value in Figure 1, and there are quite a few 

SPT N- data points that are with similar (N1)60 values (circles).  Although these data points are 

not site-specific, their  values may be meaningful.  If the design site characteristics are within the 

coverage of the SPT N- database, it is reasonable to think that the site-specific  value can be 

captured by the ensemble of these non-specific  values.  By doing so, a single measurement of 

site-specific SPT N is converted into several “equivalent”  values that are viewed as posterior 

information for the actual site-specific  value. 

 

Although this ensemble of “equivalent”  values (posterior information) may be a meaningful and 

realistic representation of the actual site-specific  value, there are occasion concerns expressed in 

the literature that the transformation models are applied too liberally in practice without careful 

consideration of their limitations.  The purpose of this report is therefore to address the following 

practical questions: 

1. What does the design soil parameter estimated from a transformation model really mean?  The 

estimate can be a point estimate (e.g., the average of the equivalent  values) or an interval 

estimate (e.g., the range of the equivalent  values). 

2. In what conditions will a transformation model produce meaningful estimates that are closely 

related to the actual site-specific design soil parameter? 

3. In what conditions will a transformation model produce meaningless results that have very little 



to do with the actual site-specific design soil parameter? 

 

 

Figure 1  Transformation model between (N1)60 and  derived from data points in the literature. 

 

This report will address the above questions through the “leave-one-out” design exercise based on a 

real soil database.  The soil database is divided into two subsets: the first subset contains data 

points from a single site (design site), whereas the second subset contains the remaining sites in the 

database (training sites).  The purpose of the leave-one-out exercise is to construct the 

transformation model based on the training sites, then estimate the design soil parameter for the 

design site.  The effectiveness of the transformation model can then be verified by comparing the 

estimation result and the actual value of the design soil parameter.  To understand the effect of 

adopting a “general” soil database versus a “regional” soil database, two clay databases are 

collected: one general database for generic clays, and one regional database for Finland clays. 

 

MULTIVARIATE SOIL DATABASES 

Two clay databases and one sand database, shown in Table 1, are compiled.  The databases are 

labelled as (soil type)/(number of parameters of interest)/(number of data points).  The two clay 

databases will be adopted to conduct the leave-one-out design exercise.  CLAY/10/7490 is a 

general clay database, whereas F-CLAY/7/216 is a reginal (Finland) clay database.  SAND/7/2794 

is a general sand database. 

 

CLAY/10/7490 

The CLAY/10/7490 database (Ching and Phoon 2014) is a general clay database consisting of data 

points from 251 studies.  The geographical regions cover Australia, Austria, Brazil, Canada, China, 

England, Finland, France, Germany, Hong Kong, India, Iraq, Italy, Japan, Korea, Malaysia, Mexico, 

New Zealand, Norway, Northern Ireland, Poland, Singapore, South Africa, Spain, Sweden, Thailand, 

Taiwan, United Kingdom, United States, and Venezuela.  The clay properties cover a wide range 

of overconsolidation ratio (OCR) (but mostly 1~10), a wide range of sensitivity (St) (sites with St = 



1~ tens or hundreds are fairly typical), and a wide range of plasticity index (PI) (but mostly 8 ~ 100).  

Ten dimensionless parameters of clays are of primary interest: liquid limit (LL), plasticity index 

(PI), liquidity index (LI), normalized vertical effective stress ('
v/Pa) (Pa is one atmosphere pressure 

= 101.3 kN/m2), normalized preconsolidation stress ('
p/Pa), normalized undrained shear strength 

(su/'
v) (su converted to the “mobilized” su defined by Mesri and Huvaj 2007), sensitivity (St), 

normalized piezocone tip resistance (qt-σv)/σ
'
v, and normalized effective piezocone tip resistance 

(qt-u2)/σ
'
v, and piezocone pore pressure ratio Bq.  Some other dimensionless parameters of interest, 

such as su/'
p, overconsolidation ratio (OCR), and su

re/Pa, can be derived from the above 10 

parameters.  The basic statistics of all these parameters (10 basic parameters together with su/'
p, 

OCR, and su
re/Pa) are listed in Table 2. 

 

Table 1  Three multivariate soil databases. 

Database Reference Parameters of interest 
# data 
points

# sites/
studies

Range of properties 

OCR PI St 

CLAY/10/7490 
Ching and 

Phoon 
(2014) 

LL, PI, LI, '
v/Pa, '

p/Pa, su/'
v, St, 

(qtσv)/σ
'
v, (qtu2)/σ

'
v, Bq 

7490
251 

studies
1~10 

Low to 
very high 
plasticity 

Insensitive 
to quick 

clays 

F-CLAY/7/216 
D’Ignazio 

et al. 
(2016) 

su
FV, v, p, wn, LL, PL, St 216 24 sites 1~7.5 

Low to 
very high 
plasticity 

Insensitive 
to quick 

clays 

SAND/7/2794 
Ching et 
al. (2016) D50, Cu, Dr, '

v/Pa, , qt1, (N1)60 2794
176 

studies
1~15 

D50 = 0.1~40 mm 
Cu = 1~1000+ 

Dr = -0.1~117% 

Note: LL = liquid limit; PL = plastic limit; PI = plasticity index; LI = liquidity index; wn = natural water content; D50 = 
median grain size; Cu = coefficient of uniformity; Dr = relative density; ’

v = vertical effective stress; ’
p = 

preconsolidation stress; su = undrained shear strength; su
FV = undrained shear strength from field vane; su

re = remoulded 
su;  = effective friction angle; St = sensitivity; OCR = overconsolidation ratio, (qt-σv)/σ

'
v = normalized cone tip 

resistance; (qt-u2)/σ
'
v = effective cone tip resistance; u0 = hydrostatic pore pressure; (u2-u0)/σ

'
v = normalized excess pore 

pressure; Bq = pore pressure ratio = (u2-u0)/(qt-σv); Pa = atmospheric pressure = 101.3 kPa; qt1 = (qt/Pa)CN (CN is the 
correction factor for overburden stress); (N1)60 = N60CN (N60 is the N value corrected for the energy ratio). 

 

Table 2  Statistics for the CLAY/10/7490 database (Table 3 in Ching and Phoon 2014) 

Variable n* Mean COV* Min Max 

LL 3822 67.7 0.80 18.1 515 

PI 4265 39.7 1.08 1.9 363 

LI 3661 1.01 0.78 -0.75 6.45 

'
v/Pa 3370 1.80 1.47 4.13E-3 38.74 

'
p/Pa 2028 4.37 2.31 0.094 193.30 

su/'
v 3538 0.51 1.25 3.68E-3 7.78 

St 1589 35.0 2.88 1 1467 

Bq 1016 0.58 0.35 0.01 1.17 

(qt-σv)/σ
'
v 862 8.90 1.17 0.48 95.98 

(qt-u2)/σ
'
v 668 5.34 1.37 0.61 108.20 

su/'
p 1467 0.23 0.55 3.68E-3 1.34 

OCR 3531 3.85 1.56 1.0 60.23 

su
re/Pa 1143 0.075 2.86 9.67E-5 2.47 

* n is the number of data points; COV stands for the coefficient of variation. 



 

F-CLAY/7/216 

The F-CLAY/7/216 database (D’Ignazio et al. 2016) is a regional clay database consisting of 216 

field vane (FV) data points from 24 different test sites from Finland.  Each data point contains 

genuine multivariate information on 7 clay parameters measured at comparable depths and 

sampling locations: FV undrained strength (su
FV), vertical effective stress (v), preconsolidation 

stress (p), water content (w), liquid limit (LL), plastic limit (PL), and sensitivity (St). The clay 

properties cover wide ranges of sensitivity St (2~64), plasticity PI (2~95), overconsolidation ratio 

OCR (1~7.5), and water content w (25~150).  To be consistent with Table 2, these parameters are 

converted to dimensionless parameters PI, LI, '
v/Pa, '

p/Pa, su/'
v, etc., in which su = (design value 

of su) = su
FV(PI-dependent correction factor proposed by Bjerrum 1972).  The basic statistics for 

these dimensionless parameters are listed in Table 3. 

 

Table 3  Statistics for the F-CLAY/7/216 database 

Variable n Mean COV Min Max 

LL 216 66.3 0.30 22.0 125.0 
PI 216 38.5 0.48 2.0 95.0 

LI 216 1.44 0.46 0.42 4.80 

'
v/Pa 216 0.46 0.48 0.074 1.61 

'
p/Pa 216 0.79 0.50 0.20 2.27 

su/'
v 216 0.40 0.74 0.11 2.71 

St 216 17.4 0.79 2 64 

su/'
p 216 0.22 0.31 0.058 0.52 

OCR 216 1.84 0.51 1.0 7.5 

su
re/Pa 216 0.016 0.99 0.0011 0.14 

 

Comparison between CLAY/10/7490 and F-CLAY/7/216 

The main difference between the two databases is that CLAY/10/7490 is a general database, 

whereas F-CLAY/7/216 is a regional database.  A preliminary comparison between Tables 2 and 3 

indicates the following distinct features between the general and regional databases: 

1. The number of data points for the general database is significantly larger than that for the 

regional database. 

2. The range spanned between the minimum and maximum values for the general database is 

significantly wider than that for the regional database.  As a result, the COVs for the general 

database are significantly larger than those for the regional database. 

 

 

Figure 2 shows the LI-St, OCR-su/'
v, LI-'

p/Pa, and PI-su/'
p relationships for the two databases.  

It is clear that the coverage of the general database (CLAY/10/7490) is wider than the coverage of 

the regional database (F-CLAY/7/216).  There are six data points from four Finland sites 

(annotated in Figure 2) with LI > 3, but with exceptionally low St.  These six data points in 



F-CLAY/7/216 are not within the coverage of the general database CLAY/10/7490. 

     

     

Figure 2  LI-St, OCR-su/'
v, LI-'

p/Pa, and PI-su/'
p relationships for the two databases. 

 

USE OF DATABASE IN ESTIMAITNG SITE-SPECIFIC DESIGN SOIL PARAMETER 

In the design process, a soil database can be adopted to develop a transformation model that can be 

further used to estimate the design soil parameter (e.g., su) for the design site based on site-specific 

information.  For instance, based on the site-specific OCR information of a clay at a design site, its 

su/'
v value can be estimated from an OCR-su/'

v transformation model developed from a clay 

database.  Note that the clay database and the resulting transformation model are not site-specific.  

A question may arise: is the resulting su/'
v estimate site-specific or not?  This question can be 

answered by comparing the su/'
v estimate with the actual site-specific su/'

v value.  If the su/'
v 

estimate can capture the actual site-specific su/'
v value, the su/'

v estimate is site-specific.  

Otherwise, it is not.  This comparison can be realized by the leave-one-out design exercise.  The 

details for this leave-one-out exercise will be presented later.  Consider two scenarios: 



1. Scenario 1: A regional database, such as F-CLAY/7/216, is adopted to develop the OCR-su/'
v 

transformation model. 

2. Scenario 2: A regional database is not available.  A general database, such as CLAY/10/7490, 

is used to develop the OCR-su/'
v transformation model. 

For both scenarios, the question whether the resulting su/'
v estimate is site-specific or not will be 

addressed.  The effect for adopting a regional database against a general database will be also 

illustrated. 

 

Scenario 1 

Let us consider a new Finland site, and suppose the design engineer has the regional database 

F-CLAY/7/216.  Consider a clay at that site with a known site-specific OCR, denoted by OCRnew.  

The goal is to estimate its site-specific su/'
v, denoted by (su/'

v)new.  The estimate can be either a 

point estimate or an interval estimate.  The design engineer can adopt the OCR-su/'
v data points in 

the database to develop the following transformation model: 

 

   u vln s a b ln OCR +      (1) 

 
where (a, b) are unknown coefficients to be estimated;  is the transformation error, modeled as a 
zero-mean normal random variable with standard deviation .  (a, b) can be estimated by least 
squares: 
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 (2) 

 
where (a*, b*) denote the least square estimates for (a, b); OCRi and (su/'

v)i denote the OCR and 
(su/'

v) values of the i-th data point is the clay database; n is the number of data points in the 
database.   can be estimated as well: 
 

    
n 2

* * *
u v ii

i 1

1
log s a b log OCR

n 2


          (3) 

 
The design engineer can then obtain two useful estimates for ln[(su/'

v)new]: (a) the point estimate 
a*+b*ln(OCRnew); and (b) the 95% confidence interval (CI) estimate defined by 
 

 
  2

new m* * *
new 0.975

xx

ln OCR x1
a b ln OCR   t 1

n S

          (4) 

 
where t0.975 is the 97.5% percentile for the Student-t distribution with (n-2) degrees of freedom.  In 
the following illustration, we will focus on the 95% confidence interval (CI) estimate.  The 95% 
CI in Eq. (4) is a “nominal” 95% CI.  It is unclear whether it is a genuine 95% CI.  Namely, it is 



unclear whether the actual chance for ln[(su/'
v)new] to be within the interval is indeed close to 95%. 

 
To illustrate that the nominal 95% CI is genuine, consider the following “leave-one-out” design 
exercise.  There are 24 sites in the F-CLAY/7/216 database.  Each time, one site is treated as the 
new design site, whereas the remaining 23 sites are treated as the training sites.  Note that the new 
design site and the training sites belong to the same “population”: they are all Finland sites.  
However, the design site is independent of the 23 training sites.  There may be several clay data 
points in the design site.  For each clay at the design site, its OCRnew is considered known, e.g., an 
oedometer test is conducted to determine its OCR.  However, we “pretend” its (su/'

v)new to be 
unknown.  First, (a*, b*, 

*) are estimated based on the 23 training sites using Eqs. (2) and (3).  
The point estimate for ln[(su/'

v)new] is a*+b*ln(OCRnew) and the nominal 95% CI for ln[(su/'
v)new] 

is obtained using Eq. (4).  Because ln[(su/'
v)new] for the clay is actually known, we can compute 

the prediction error e = ln[(su/'
v)new]–a*–b*ln(OCRnew) and also determine whether ln[(su/'

v)new] 
is within the nominal 95% CI.  This leave-one-out exercise is repeated for all 216 data points in 
F-CLAY/7/216.  Figure 3 shows the histogram of the 216 prediction errors.  The prediction errors 
have a mean value that is roughly zero.  Among the 216 leave-one-out trials, ln[(su/'

v)new] is 
within the nominal 95% CI for 202 times.  This means that the CI is in effect a 202/216 = 93.5% 
CI: it is reasonably close to a genuine 95% CI.  The difference between 93.5% and 95% may be 
partially due to the statistical error. 
 

 
Figure 3  Histogram of the prediction error e = ln[(su/'

v)new]–a*–b*ln(OCRnew). 
 
The above leave-one-out design exercise shows that the nominal 95% CI developed by the 23 
training sites is close to genuine.  This is probably because the design site and the 23 training sites 
belong to the same population, e.g., Finland sites.  When this happens (same population), the 
nominal 95% CI is theoretically the genuine 95% CI.  This conclusion will not change if all 24 
sites in F-CLAY/7/216 are adopted to develop the transformation model and goal is to estimate the 
(su/'

v)new for a 25th site that is not in F-CLAY/7/216.  This justifies the use of a transformation 
model developed by a regional database: if the 25th site is within the same region (i.e., same 
population), the resulting nominal 95% CI for the ln[(su/'

v)new] of this 25th site will be close to 
genuine.  That is to say, the chance for ln[(su/'

v)new] to be within the 95% CI will be close to 95%. 
 
There is a caveat here: the soil database needs to have a sufficient coverage to represent the entire 
region, i.e., the population.  In the above leave-one-out design exercise, there are 24 – 1 = 23 
training sites.  If the number of sites is small, the training sites can no longer represent the Finland 



population, and the nominal 95% CI can cease to be genuine, so the actual chance for ln[(su/'
v)new] 

to be within the nominal 95% CI will not be close to 95%.  Figure 4 shows how this actual chance 
varies with respect to the number of training sites (see the line with legend “Scenario 1”).  
Consider a subset database with (nt + 1) sites randomly sampled from the 24 sites in F-CLAY/7/216.  
The leave-one-out design exercise is conducted on the subset database with nt training sites and one 
design site, and the chance for ln[(su/'

v)new] to be within the 95% CI can be evaluated.  This actual 
chance is itself random because it depends on the random sampling effect of the (nt + 1) sites.  
Therefore, the subset database with (nt + 1) sites is randomly sampled for 100 times to obtain 100 
samples for the actual chance.  The horizontal axis in Figure 4 is the number of training sites (nt) 
and the vertical axis is the average of the 100 samples for the actual chance.  The (averaged) actual 
chance seems to converge to 95% with increasing number of sites.  The actual chance is 
significantly less than 95% if the database contains less than 4 Finland sites, whereas the actual 
chance is close to 95% if the database contains more than 10 Finland sites.  This means that for the 
Finland case, a regional database with more than 10 sites should have a sufficient coverage. 
 

 
Figure 4  Chance for ln[(su/'

v)new] to be within the nominal 95% CI. 

 
Scenario 2 
Suppose that the new design site is a Finland site, but a Finland database is not available.  Yet, 
suppose the design engineer has the general database CLAY/10/7490.  Note here that now the 
design site and the training sites do not belong to the same population: the training sites obviously 
have a wider coverage because they are global sites.  The OCR-su/'

v data points in 
CLAY/10/7490 are from 179 global sites from Americas, Europe, Asia, etc.  The design engineer 
can still adopt the OCR-su/'

v transformation model developed from CLAY/10/7490 to obtain the 
nominal 95% CI, but is it still a genuine 95% CI with respect to the Finland design site? 
 
To understand the significance of the nominal 95% CI obtained from a general database, the 
following design exercise is taken.  It is not necessary to do leave-one-out, because the design site 
is not within the general database.  First, (a*, b*, 

*) are estimated using Eqs. (2) and (3) based on 
the general database.  Each clay data point in F-CLAY/7/216 is a Finland design case.  Its OCR 
value is treated as known (denoted by OCRnew), whereas we pretend its su/'

v value to be unknown 
[denoted by (su/'

v)new].  The nominal 95% CI for this ln[(su/'
v)new] can be obtained using Eq. (4) 

based on (a*, b*, 
*) and OCRnew.  Nonetheless, ln[(su/'

v)new] is actually known, and we can 



determine whether ln[(su/'
v)new] is within the nominal 95% CI.  This exercise is repeated for all 

216 data points in F-CLAY/7/216.  It turns out that the actual chance for ln[(su/'
v)new] of a Finland 

clay to be within the nominal 95% CI is 99.1%, significantly larger than 95%.  This is probably 
because the design site and the 179 training sites belong to different populations.  When this 
happens (different populations), there is no guarantee that the nominal 95% CI is genuine. 
 
There are 179 sites in the general database CLAY/10/7490.  It is interesting to know that the actual 
chance will change if there is a different number of training sites.  Figure 5 shows how the actual 
chance varies with respect to the number of training sites (nt) (see the line with legend “Scenario 2”).  
Again, the actual chance is random due to the random sampling effect of the nt sites.  Therefore, 
the subset database with nt sites is randomly sampled from the 179 sites for 100 times to obtain 100 
samples for the actual chance.  The actual chance seems to converge to 100% with increasing 
number of training sites, rather than converge to 95%.  The 95% CI developed from a general 
database with many sites is “conservative” with respect to a Finland site, in the sense that the actual 
chance for ln[(su/'

v)new] of a Finland site to be within the 95% CI is more than 95%.  The nominal 
95% CI is wider than the genuine 95% CI, because CLAY/10/7490 has a wider coverage than the 
Finland database F-CLAY/7/216.  This wider coverage can be clearly seen in Figure 2.  
Nonetheless, the actual chance can be significantly less than 95% if the general database contains 
less than 4 sites. 
 
Scenario “A” 
Let us consider a rather academic scenario: the new design site belongs to the “general population”: 
the population containing all global sites.  We call this scenario “Scenario A”.  The purpose of 
this scenario is to further verify the significance of the nominal 95% CI developed from the general 
database.  Let a clay at the design site have a known site-specific OCR, denoted by OCRnew.  The 
goal is to estimate its unknown su/'

v, denoted by (su/'
v)new.  The nominal 95% CI for ln[(su/'

v)new] 
is constructed by the general database CLAY/10/7490.  Note that the sites in the general database 
CLAY/10/7490 also belong to the general population.  Therefore, the design site and the training 
sites belong to the same general population.  Is this nominal 95% CI the genuine 95% CI with 
respect to the new design site? 
 
The following leave-one-out design exercise is adopted to illustrate the significance of the nominal 
95% CI.  The OCR-su/'

v data points in the CLAY/10/7490 database are from 179 sites.  Each 
time, one site is treated as the design site, whereas the remaining 178 sites are treated as the training 
sites.  Note that the design site and the 178 training sites belong to the same general population.  
First, (a*, b*, 

*) are estimated based on the 178 training sites using Eqs. (2) and (3), and the 
nominal 95% CI for ln[(su/'

v)new] is obtained using Eq. (4).  Nonetheless, the ln[(su/'
v)new] for the 

design site is actually known so that we can determine the chance for ln[(su/'
v)new] to be within the 

nominal 95% CI.  The actual chance for ln[(su/'
v)new] to be within the nominal 95% CI is about 

94.4%, close to 95%.  Again, the caveat is that there is a sufficient number of sites in the database.  
Figure 6 shows how the actual chance varies with respect to the number of training sites (nt).  
Again, this actual chance is random because it depends on the random sampling effect of the 
training sites.  The vertical axis is the average of the 100 samples for the actual chance.  The 
(averaged) actual chance seems to converge to 95% with increasing number of sites.  The actual 
chance is close to 95% if the number of sites is more than 50-100. 
 



 
Figure 6  Chance for ln[(su/'

v)new] to be within the nominal 95% CI (Scenario A). 
 
Discussions 
The key questions that this study aims to address are: 
1. What does the design soil parameter estimate from a transformation model really mean? 

2. In what conditions will a transformation model produce meaningful estimates that are closely 

related to the actual site-specific design soil parameter? 
 
Based on the above results, it can be concluded that the nominal 95% CI produced by the 
transformation model is meaningful because it has a large chance to include the actual site-specific 
ln[(su/'

v)new].  Moreover, the nominal 95% CI is close to genuine, as long as the design site and 
the training sites belong to the same population.  The following two scenarios exemplify the 
concept of “same population”: 
1. The design site is a Finland site, whereas the soil database is a Finland (regional) soil database 

that has a sufficient coverage.  This is Scenario 1.  For the Finland case, 10 sites in the 
regional database seem sufficient. 

2. The design site belongs to the general population, whereas the soil database is a general 
database with a sufficient coverage.  This is Scenario A.  In the above illustration, 50-100 
sites in the general database seem sufficient. 

 
Although the nominal 95% CI provides a satisfactory estimate for the site-specific ln[(su/'

v)new], it 
is an interval estimate, not a point estimate.  It is possible to obtain the point estimate, i.e., the 
point estimate = a*+b*ln(OCRnew), but certain inaccuracy is to be expected (see the prediction error 
in Figure 3). 
 
3. In what conditions will a transformation model produce meaningless results that have little to do 

with the actual site-specific design soil parameter? 
 
If the design site and the training sites do not belong to the same population, there is no guarantee 
that the nominal 95% CI derived from the training sites is genuine.  If the design site belongs to 
the Finland population but the training sites are general with a sufficient number of sites, the 
nominal 95% confidence interval derived from the general database will be wider the genuine 95% 



CI.  When this happens, the nominal 95% CI is still meaningful (because it still has a large chance 
to include the actual ln[(su/'

v)new]) but less effective. 
 
The nominal 95% CI may become completely meaningless if the design site and training sites 
belong to two populations occupying completely different regions in the OCR-(su/'

v) space.  For 
instance, the design site contains fissured clays, whereas the training sites only contains 
non-fissured clays. 
 
The Appendix (Transformation Models Calibrated by Soil Databases) shows some transformation 
models calibrated by the F-CLAY/7/216 regional database and by the CLAY/10/7490 general 
database.  These transformation models were originally developed in the literature, but their biases 
and variabilities are calibrated by the soil databases.  Given the site-specific investigation 
information of a new design site, the point estimate and nominal 95% CI can be obtained from these 
transformation models (details given in the Appendix).  The 95% CI estimate is meaningful in the 
sense that the actual design soil parameter will have a large chance to be within the confidence 
interval.  The Appendix also shows some transformation models for sands as well as their biases 
and variabilities calibrated by the SAND/7/2794 general database. 
 
Other transformation models 
For other transformation models, the qualitative conclusions obtained above remain unchanged.  
Consider the LI-St transformation model.  Figure 7 shows how the actual chance for ln[(St)new] to 
be within the nominal 95% CI varies with the number of sites in the database.  The left plot is for 
Scenarios 1 and 2, whereas the right plot is for Scenario A.  Those plots are qualitatively similar to 
Figures 4 and 6. 
 

   
Figure 7  Chance for ln[(St)new] to be within the nominal 95% CI: (left) Scenarios 1 & 2; (right) 

Scenario A. 
 
Multivariate correlations 
We have illustrated how ln[(su/'

v)new] can be estimated based on the site-specific OCRnew.  It was 
shown that the nominal 95% CI developed from a soil database can be useful and meaningful.  
However, it can happen that the resulting 95% CI is very wide so that ln[(su/'

v)new] is still very 
uncertain.  Multivariate information is usually available in a typical site investigation.  For 



instance, when undisturbed samples are extracted for oedometer tests to determine OCR, piezocone 
test (CPTU) may be conducted in close proximity.  These multiple data sources are typically 
correlated to the design soil parameter, e.g., the undrained shear strength (su).  Figure 8 shows the 
data points for the two transformations in the CLAY/10/7490 database.  It is clear that both OCR 
and (qt-'

v)/'
v are positively correlated to su/'

v.  These multiple correlations can be exploited to 
reduce the uncertainty in the design soil parameter.  In the previous sections, we have illustrated a 
framework where the site-specific OCR information can be used to obtain the 95% CI for (su/'

v).  
This univariate framework is extended to account for multivariate framework, e.g., both OCR and 
(qt-'

v)/'
v are known, in the following. 

 
Suppose that a design engineer has a multivariate OCR-[(qt-'

v)/'
v]-(su/'

v) database.  For each 
data point, OCR, (qt-'

v)/'
v, and su/'

v are simultaneously known.  The engineer can adopt the data 
points in the database to develop the following multivariate transformation model: 
 

     u v t v vln s a b ln OCR c ln q +             (5) 

 
where (a, b, c) are unknown coefficients to be estimated;  is the transformation error, modeled as a 
zero-mean normal random variable with standard deviation .  (a, b, c) can be estimated by least 
squares: 

 

    
    

    

 
 

 

1 t v v u v1 1
*

1 u v2 t v v* T T 22

*

u v nn t v v n

1 log OCR log q log s
a

log s1 log OCR log q
b

c
log s1 log OCR log q



                                          
            

A A A y A y
  

 (6) 

 
 can be estimated as well: 
 

       
n 2

* * * *
u v i t v vi i

i 1

1
log s a b log OCR c log q

n 3


                 (7) 

 
Based on the OCR-[(qt-'

v)/'
v]-(su/'

v) data points in CLAY/10/7490, the estimated 
* is equal to 

0.46.  With the OCR-(su/'
v) information from the same data points, the estimated 

* for the 
univariate OCR-(su/'

v) transformation model in Eq. (1) is equal to 0.51.  This shows that the 
transformation uncertainty in the multivariate model (Eq. 5) is less than that in the univariate model 
(Eq. 1).  The resulting 95% CI for ln[(su/'

v)new] from the multivariate model (to be presented 
below) will be also narrower than that from the univariate model. 
 
Now consider a new design site with known site-specific OCR and (qt-v)/'

v, denoted by OCRnew 
and [(qt-v)/'

v]new.  The goal is to estimate its site-specific su/'
v, denoted by (su/'

v)new.  Based 
on (a*, b*, c*, 

*), the design engineer can obtain two useful estimates for ln[(su/'
v)new]: (a) the 

point estimate a*+b*ln(OCRnew)+c*ln([(qt-v)/'
v]new) and (b) the nominal 95% CI estimate 

defined by 
 

       1* * * * T T
new t v v 0.975 new newnew

a b ln OCR c log q     t 1


            A A A A  (8) 

 
where t0.975 is the 97.5% percentile for the Student-t distribution with (n-3) degrees of freedom; Anew 
= [1 ln(OCRnew) ln([(qt-v)/'

v]new)]T. 



 

   
 
Figure 8  OCR-(su/'

v) and [(qt-'
v)/'

v]-(su/'
v) data points in the CLAY/10/7490 database. 

 
The following leave-one-out exercise based on CLAY/10/7490 is adopted to verify whether the 
nominal 95% CI is genuine.  There are 50 sites in the CLAY/10/7490 database containing 417 
multivariate OCR-[(qt-'

v)/'
v]-(su/'

v) data points.  Each time, one site is treated as the design site, 
whereas the remaining 49 sites are treated as the training sites that are further used to obtain the 
nominal 95% CI.  This is similar to Scenario A above.  For the leave-one-out exercise, 
ln[(su/'

v)new] is actually known.  Therefore, we can determine whether ln[(su/'
v)new] is within the 

nominal 95% CI.  Among the 417 leave-one-out trials, ln[(su/'
v)new] is within the nominal 95% CI 

for 381 times.  This means that the CI is in effect a 381/417 = 91.4% CI.  The difference between 
91.4% and 95% may be partially due to the statistical error.  It is also possible that 50 sites are not 
yet sufficient for the convergence.  Figure 9 shows how the actual chance for ln[(su/'

v)new] to be 
within the nominal 95% CI varies with respect to the number of sites in the database.  The 
convergence behavior in this figure is similar to those in Figures 4-7.  It is possible that the 
qualitative conclusions obtained for the univariate framework above still apply to the multivariate 
framework. 
 



 
Figure 9  Chance for ln[(su/'

v)new] to be within the nominal 95% CI (multivariate scenario). 

 

CONCLUSIONS 

A transformation model is frequently used to estimate the design soil parameter.  However, it is not 

clear what the estimated design soil parameter really means.  A possible concern for such a soil 

parameter estimate is that a transformation model is constructed by non-site-specific data points.  

Can these non-site-specific data points be used to derive any meaningful site-specific estimate?  

The purpose of this report is to address this question and to verify the significance of this design 

soil parameter estimate based on the so-called “leave-one-out” design exercise. 

 

The leave-one-out exercise emulates the process of estimating the design soil parameter: the design 

soil parameter for a “design site” is estimated based on the transformation model constructed by a 

set of “training sites”.  The design site is not within the training sites.  Basically, a large soil 

database with N sites is divided into two subsets: one subset only contains the design site, and the 

other subset contains N-1 training sites.  A transformation model is first calibrated by the training 

sites, then it is adopted to estimate the design soil parameter for the design site.  This process is 

repeated for all data points in the soil database.  Because the actual value of the design soil 

parameter for the design site is in fact known, the performance and significance of the design soil 

parameter estimate obtained from the transformation model can be verified.  In this report, we 

focus on the 95% confidence interval (CI) estimate obtained from the transformation model.  This 

95% CI may or may not be the genuine 95% CI, so it is called, in this report, the “nominal” 95% CI. 

 

The results show that the nominal 95% CI estimate obtained from the transformation model is 

meaningful, albeit the transformation model is derived from non-site-specific data points.  The 

concept of “population” in statistics is central to our conclusions.  It is concluded that as long as 

the design site and training sites belong to the same population, the nominal 95% CI estimate 



obtained from the transformation model is close to a genuine 95% CI, meaning that the chance for 

the actual design parameter to be within the nominal 95% CI is close to 95%.  A radical view is 

that only the data points at the design site (site-specific data points) can be used to derive the design 

soil parameter and that all non-site-specific data points are irrelevant.  Nonetheless, the findings in 

this report suggest that this view may be incorrect.  In fact, non-site-specific data points can be still 

useful if they are in the same “population” for the design site.  This means that if the design site is 

a Finland site, the transformation model developed by Finland training sites (i.e., a Finland database) 

can be useful and meaningful in the sense that the resulting nominal 95% CI is close to a genuine 

95% CI. 

 

A more controversial scenario is that the design site and training sites do not belong to the same 

population, e.g., the design site is a Finland site, yet the training sites are general (global) sites.  In 

the case that the design site population is a subset of the training site population (e.g., the Finland 

population is a subset of the general population), the results in this report suggest that the resulting 

nominal 95% CI is no longer a genuine 95% CI.  Moreover, the nominal 95% CI is wider than the 

genuine 95% CI.  In one previous illustration in this report (Scenario 2), the chance for the actual 

design parameter to be within the nominal 95% CI is close to 95% is 99.1%.  Yet, this does not 

suggest that the nominal 95% CI is completely useless and meaningless.  Instead, this only 

suggests that the nominal 95% CI is less effective and more conservative. 

 

An even worse scenario is that the design site and training sites not only belong to different 

populations but also the design site population is not a subset of the training site population.  For 

instance, the design site is with fissured clays, yet the training sites do not contain fissured clays.  

When this occurs, the resulting nominal 95% CI can become useless and meaningless. 

 

The Appendix shows some transformation models calibrated by some soil databases.  The 

guideline for deriving the point estimate and 95% CI estimate is also provided. 
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APPENDIX  TRANSFORMATION MODELS CALIBRATED BY SOIL DATABASES 
 
This appendix presents the calibration results for some transformation models in the literature.  
The calibrated models can be used to develop the point estimate and 95% confidence interval (CI) 
for the design soil parameter.  The bias and variability for the clay transformation models are 
calibrated by the F-CLAY/7/216 and CLAY/10/7490 databases (see Table 4), whereas the sand 
transformation models are calibrated by the SAND/7/2794 database (see Table 5). 
 
To explain the significance of the bias and variability for a transformation model, consider the first 
model in Table 4, the LI-(su

re/Pa) model proposed by Locat and Demers (1988).  The actual target 
value is su

re/Pa, and the predicted target value is 0.0144LI-2.44.  For each data point in the database 
with simultaneous knowledge of (LI, su

re), (actual target value)/(predicted target value) = 
(su

re/Pa)/(0.0144LI-2.44) can be computed.  The sample mean of this ratio is called the bias factor 
(b) for the transformation model.  The sample coefficient of variation (COV) of this ratio is called 



the COV () of the transformation model.  To be specific, 
 
Actual target value = predicted target value b   (9) 
 
where b is the bias factor (b = 1 means unbiased), and  is the variability term with mean = 1 and 
COV = .  If  = 0, there is no data scatter about the transformation model, i.e. the prediction is 
single-valued or deterministic, rather than a distribution.  The calibrated bias factors and COVs for 
all clays and sand transformation models are shown in the last two columns of Tables 4 and 5, 
respectively.  The number of data points used for each calibration is listed in the table (‘n’ in the 
third column). 
 
The calibrated bias and COV of a transformation model can be adopted to develop the point 
estimate and 95% CI, described as follows.  Consider again the LI-(su

re/Pa) model, let the 
site-specific LI value for the new design site be denoted by LInew, the point estimate for (su

re/Pa)new 
is simply b(predicted target value) = b(0.0144LInew

-2.44).  By assuming  to be lognormal, the 
95% CI for (su

re/Pa)new can be expressed as 
 

         
2.44

new2 2

2 2

b 0.0144 LIb predicted target value
exp 1.96 ln 1 exp 1.96 ln 1

1 1

 
          

   
 (10) 

 
If the design site is a Finland site, the chance for the actual target value to be within the above 

nominal 95% CI (with b and  calibrated by F-CLAY/7/216) should be close to 95%.  If the design 

site is a general site, the chance for the actual target value to be within the above nominal 95% CI 

(with b and  calibrated by CLAY/10/7490) should be close to 95%.  The numbers of calibration 

data points (n) for some sand transformation models are quite limited (see Table 5).  For those 

transformation models, their nominal 95% CI may not be genuine. 

 

 



Table 4.  Transformation models in the literature for some clay parameters. 

Target 
parameter 

Measured 
parameter(s)

Literature Transformation model 
Calibration 

database 

Calibration results 

n Bias (b) COV () 

su
re LI Locat and Demers (1988) re 2.44

u as P 0.0144 LI   
CLAY/10/7490 899 1.92 1.25 
F-CLAY/7/216 216 2.23 1.08 

St LI Bjerrum (1954) 0.8 LI
tS 10   

CLAY/10/7490 1279 2.06 1.09 
F-CLAY/7/216 216 1.56 1.40 

St LI Ching and Phoon (2012a) 1.910
tS 20.726 LI   

CLAY/10/7490 1279 0.88 1.28 
F-CLAY/7/216 216 0.57 1.94 

'
p LI, St Stas and Kulhawy (1984) 1.11 1.62 LI

p aP 10     CLAY/10/7490 249 2.94 1.90 
F-CLAY/7/216 67 7.54 1.13 

'
p LI, St Ching and Phoon (2012a) 1.319 0.536

p a tP 0.235 LI S     CLAY/10/7490 489 1.32 0.78 
F-CLAY/7/216 216 1.35 0.94 

'
p 

wn, PL, 
LL 

Kootahi and Mayne (2016) 

10 v a n

0.89 0.12 0.14
p a v a n

0.71 0.53 0.71
p a v a n

If  5.512log ( ' P ) 0.061 LL 0.093 PL 6.219 e 1.123

P 1.62 ( P ) (LL) (w )

Otherwise

P 7.94 ( P ) (LL) (w )





       

     

     

CLAY/10/7490 1242 1.10 0.67 

F-CLAY/7/216 216 1.02 0.38 

'
p qt Kulhawy and Mayne (1990)

 p a t v aP 0.33 q P    CLAY/10/7490 690 0.97 0.39 

 p a 2 0 aP 0.54 u u P     CLAY/10/7490 690 1.18 0.75 

'
p qt Chen and Mayne (1996) 

  1.200

p a t v aP 0.227 q P       CLAY/10/7490 690 0.99 0.42 

  1.053

p a t 2 aP 0.490 q u P       CLAY/10/7490 542 1.08 0.61 

 p a 2 0 aP 1.274 0.761 u u P      CLAY/10/7490 690 0.49 0.59 

OCR qt Kulhawy and Mayne (1990)  t v vOCR 0.32 q      CLAY/10/7490 690 1.00 0.39 

OCR qt Chen and Mayne (1996)   1.107

t v vOCR 0.259 q        CLAY/10/7490 690 1.01 0.42 



  0.969

t 2 vOCR 0.545 q u        CLAY/10/7490 542 1.06 0.57 

1.077
qOCR 1.026 B   CLAY/10/7490 779 1.28 0.86 

su PI Mesri (1975) u ps 0.22   
CLAY/10/7490 1155 1.04 0.55 
F-CLAY/7/216 216 1.08 0.28 

su OCR Jamiolkowski et al. (1985) 0.8
u vs 0.23 OCR    

CLAY/10/7490 1402 1.11 0.53 
F-CLAY/7/216 216 1.15 0.29 

su OCR, St Ching and Phoon (2012a) 0.823 0.121
u v ts 0.229 OCR S     

CLAY/10/7490 395 0.84 0.34 
F-CLAY/7/216 216 0.84 0.32 

su qt Ching and Phoon (2012b) 

     t v v u v qq s 29.1 exp 0.513B           CLAY/10/7490 423 0.95 0.49 

     t 2 v u v qq u s 34.6 exp 2.049B          CLAY/10/7490 428 1.11 0.57 

   2 0 v u v qu u s 21.5 B         CLAY/10/7490 423 0.94 0.49 

* All su are the “mobilized” su defined by Mesri and Huvaj (2007); en: natural void ratio. 

 

 

 

 

 

 



Table 5.  Transformation models in the literature for some sand parameters. 

Target 
parameter 

Measured 
parameter(s)

Literature Transformation model 
Calibration 

database 

Calibration results 

n Bias (b) COV ()

Dr (N1)60 Terzaghi and Peck (1967)    r 1 60
D % 100 N 60   SAND/7/2794 198 1.05 0.23 

Dr 
N60, OCR, 

Cu 
Marcuson and Bieganousky 

(1977) 

 

 

r

60

2
v0 a u

D %

222 N 2311 711 OCR
100 12.2 0.75

779 P 50 C



            

 
SAND/7/2794 132 1.00 0.21 

Dr 
(N1)60, 

OCR, D50 
Kulhawy and Mayne (1990)    

 
1 60

r 0.18
10 50

N
D % 100

60 25log D OCR
 

   
SAND/7/2794 199 1.01 0.21 

Dr qt1 Jamiolkowski et al. (1985)    r 10 t1D % 68 log q 1      SAND/7/2794 681 0.84 0.33 

Dr qt1, OCR Kulhawy and Mayne (1990)   t1
r 0.18

C

q
D % 100

305 Q OCR
 

 
 SAND/7/2794 840 0.93 0.34 

Dr qt1 Mayne et al. (2001)   t1
r 0.2

q
D % 100

300 OCR
 


 SAND/7/2794 840 0.93 0.34 

 Dr, cv Bolton (1986)   cv r f3 D 10 ln p 1            SAND/7/2794 391 1.03 0.052 

 Dr, cv Salgado et al. (2000)   cv r f3 D 8.3 ln p 0.69            SAND/7/2794 127 1.08 0.054 

 (N1)60 Hatanaka and Uchida (1996)  1 60
15.4 N 20     SAND/7/2794 28 1.04 0.095 

 (N1)60 Hatanaka et al. (1998) 
   

 
1 160 60

1 60

15.4 N 20 N 26

40 N 26

     


 SAND/7/2794 58 1.07 0.090 

 (N1)60 Chen (2004)  10 1 60
27.5 9.2 log N         SAND/7/2794 59 1.00 0.095 

 qt 
Robertson and Campanella 

(1983) 
 1

10 t v0tan 0.1 0.38 log q         SAND/7/2794 99 0.93 0.056 

 qt1 Kulhawy and Mayne (1990)  10 t117.6 11 log q     SAND/7/2794 376 0.97 0.081 

*cv: critical-state friction angle (in degrees); pf is the mean effective stress at failure = (1f+2f+3f)/3; QC = 1.09, 1.0, 0.91 for low, medium, high compressibility 
soils, respectively. 

 


