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Abstract: Site characterization is usually carried out based on geotechnical data from site investigation. 
However, the existence of outliers in geotechnical data might lead to an incorrect characterization result, which 
necessitate the outlier detection. Site-specific geotechnical data is usually multivariate, sparse and might has a 
certain trend. This study proposed an outlier detection algorithm that considers the influence of statistical 
uncertainty caused by limited data through Bayesian method. Posterior samples of model parameters are 
generated by a Bayesian updating method together with subset simulation. Based on the posterior samples, the 
probability of outlier can be obtained, both block-wise and component-wise. The proposed algorithm is applied 
to a dataset from a clay site with some artificial outliers. The results show that the outliers can be effectively 
identified by the proposed outlier detection algorithm. 
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1. Introduction 
Anomalies in geotechnical data are inevitable 
and have great impacts on site characterization. 
Identification of these outliers will help to 
improve the quality of data. Various algorithms 
have been proposed to identify the outliers from 
observations, such as 3-σ rule, Mahalanobis 
distance (Rousseuw and Leroy, 1987), local 
outlier factor (Breunig et al., 2000), and 
Bayesian method (Yuen and Mu, 2012).  

In geotechnical practice, the site-specific 
geotechnical data is usually sparse and 
multivariate. On the one hand, most of outlier 
detection algorithms that are developed for 
large dataset, such as the machine learning 
technique-based algorithms, do not work well 
for the sparse geotechnical data. Furthermore, 
the sparse site-specific geotechnical data is 
always associated with significant statistical 
uncertainty. It is necessary to incorporate the 
statistical uncertainty into outlier detection.  

On the other hand, different geotechnical 
parameters can be obtained at the same location, 
and they are correlated to a certain degree 
(Ching and Phoon, 2012). Existing outlier 
detection algorithms for multivariate data 
mainly focus on the block-wise outlier detection, 
which aims to identify abnormal multivariate 
data points as a whole. However, an abnormal 

multivariate data point does not mean all the 
components of the data point are abnormal. To 
fully utilize the limited data for site 
characterization, it is more desirable to identify 
the value of which parameter within the outlier 
point is abnormal, namely the component-wise 
outlier detection.  

This study proposes an outlier detection 
algorithm for multivariate and sparse 
site-specific geotechnical data, in which the 
influence of statistical uncertainty would be 
properly considered through Bayesian method. 
The proposed algorithm not only gives the 
possibility for each identified outlier, but also 
suggests the value that is the most possible 
anomaly within an outlier point. 

2. Bayesian inference 

2.1 Multivariate model 
Geotechnical parameters are typically 
non-normal because most of them are physically 
nonnegative. For simplicity, it is assumed in this 
study that the geotechnical parameters are 
lognormally distributed (Ching and Phoon, 
2012). In other words, the logarithms of 
geotechnical parameters are assumed to have a 
multivariate normal distribution. 

Due to the fact that some geotechnical 
parameters are related to the depth or the 
effective vertical stress, v, such as the 
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undrained shear strength, su, a linear regression 
model between v and other geotechnical 
parameters can be used to detrend the data. 
Consider that D geotechnical parameters (v is 
excluded) for example. The multivariate model 
is expressed by 

 y x               (1) 

where y = [y1, y2, …, yD] is the logarithms of 
geotechnical parameters; x = [1, z] and z is the 
logarithm of v; β is a 2-by-D matrix of 
regression parameters; ε = [ε1, ε2, …, εD] is the 
regression residual that follows a zero-mean 
multivariate normal distribution with covariance 
matrix Σ, i.e., ε ~ N(0, Σ). 

Eventually, the multivariate geotechnical 
data is described by parameters (β, Σ), and the 
two model parameters can be characterized 
through Bayesian method in the following 
subsections. 

2.2 Posterior of model parameters 
For sparse site-specific data, the influence of 
statistical uncertainty on model parameters (β, Σ) 
should be considered to robustly identify outliers. 
This can be achieved through the Bayesian 
method. 

According to the multivariate model 
expressed as Eq. (1), the posterior probability of 
β and Σ can be obtained by the Bayes’ rule: 

       1, | , , | ,P k P P Pβ X Y X Y β β    (2) 

where X = [x1, x2,…, xN]T is N observations of x 
and xn = [1, zn] (n = 1, 2, …, N); Y = [y1, y2, …, 
yN]T is N observations of y and yn = [yn1, yn2, …, 
ynD]; k is a normalizing constant independent 
from model parameters; P(X,Y,|β,Σ) is the 
likelihood function; P(β) and P(Σ) are prior 
probabilities of β and Σ, respectively. Herein, 
the model parameters are assumed to be 
independent. 

For the multivariate model defined by Eq. 
(1), the likelihood function can be calculated as 
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With respect to the prior, considering the case 
with little prior information, diffused 
distributions, e.g., uniform distributions with 
relatively wide ranges, can be selected as prior 
distribution to represent the non-informative 
prior information. For convenience, the lower 
triangle matrix L from the Cholesky 
decomposition of Σ (i.e., Σ = LLT) is used 
instead to parameterize the multivariate 
correlation among geotechnical parameters. All 
elements in β and L are assumed to be 
independent and identically distributed. 

When there is no closed form for the 
posterior probability, the posterior samples of β 
and L can be numerically generated by Markov 
chain Monte Carlo simulation (MCMCS). 
However, since the model parameters in this 
study is high-dimensional, the commonly-used 
MCMCS algorithms (e.g., Metropolis-Hastings 
algorithm) become inefficient and difficult to 
achieve the stationary state. To efficiently draw 
posterior samples of β and L, an algorithm 
named Bayesian updating with structural 
reliability methods (BUS) (Straub and 
Papaioannou, 2014) is employed in this study.  

2.3 Generating posterior samples using BUS 
The core idea of BUS is to convert a Bayesian 
updating problem to an equivalent reliability 
analysis problem. In reliability analysis 
problems, the occurrence probability of failure 
event, i.e., the failure probability, is of interest. 
In the context of BUS, the performance function 
in the equivalent reliability analysis problem is 
defined as (Straub and Papaioannou, 2014) 

 ln ln ln , | ,F U c P   Y X β         (5) 

where U is a random variable that uniformly 
distributed on [0, 1]; c is a positive scaling 
constant that ensures cP(X,Y|β,Σ) ≤ 1. To satisfy 
the constraint, c is taken as the reciprocal of the 
maximum likelihood in this study. 

In the equivalent reliability analysis problem, 
the failure event is defined as {F < 0} with β and 
Σ distributed as P(β) and P(Σ), respectively, and 
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U uniformly distributed on [0, 1]. It can be 
proven that the failure samples of β and Σ 
conditional on {F < 0} follow the posterior 
distribution (Straub and Papaioannou, 2014). 

To solve the equivalent reliability analysis 
problem and obtain the failure samples, 
simulation-based reliability method, such as 
direct Monte Carlo simulation and subset 
simulation (Au and Beck, 2001), can be used. 
Considering the dimensionality of parameters 
and the sampling efficiency, the subset 
simulation is adopted in this study. Interested 
readers can be referred to the literature (Au and 
Beck, 2001; Straub and Papaioannou, 2014) for 
detailed algorithm description and 
implementation procedure of BUS with subset 
simulation. 

2.4 Maximum likelihood estimator 
Since scaling constant c in the BUS depends on 
the maximum likelihood, the maximum 
likelihood estimators of β and Σ are required. 
They can be obtained easily by taking the 
differentiation of log-likelihood function (i.e., 
Eq. (4)) with respect to β and Σ, namely 
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By this means, the maximum likelihood 
estimators of β and Σ are evaluated as 

   
1T Tˆ 

β X X X Y            (8) 
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N
  Y Xβ Y Xβ          (9) 

With the maximum likelihood estimators of β 
and Σ, the maximum likelihood can be directly 
calculated with ease. 

3. Outlier detection 
3.1 Block-wise outlier detection 
Through the Bayesian inference, a large number 
of posterior samples of β and Σ are obtained. For 
a given sample set of (β, Σ), the Mahalanobis 
distance can be used as a measure to perform 
block-wise outlier detection. 

The Mahalanobis distance, d, is defined as 
(Rousseuw and Leroy, 1987) 

   
T1d   Σy xβ y xβ        (10) 

For a multivariate normal distribution, the 
probability density of an observation is uniquely 
determined by the Mahalanobis distance. 
Although d2 is chi-squared distributed with D 
degrees of freedom in general, the criterion is 
improper when the amount of data is limited.  

Instead, this study finds the most possible 
outlier that has the largest Mahalanobis distance, 
for a given sample of (β, Σ). Considering the 
impact of statistical uncertainty, the possibility 
of one point being the most possible outlier can 
be evaluated by traversing all posterior samples 
of (β, Σ). Eventually, the points with outlier 
probability greater than a prescribed threshold 
(e.g., 0.01 in this study) are recognized as the 
block-wise outliers. 

3.2 Component-wise outlier detection 
Most of existing outlier detection algorithms 
only identify the abnormal data points. With 
these methods, the identified outlier points are 
discarded even though there might be only one 
variable’s value abnormal within the data points. 
Considering the cost of site-investigation, those 
normal data should be fully utilized for site 
characterization. The target of component-wise 
outlier detection is to identify which 
geotechnical parameter has an abnormal value 
that makes the point an outlier. If one abnormal 
value is identified, then this value can be 
replaced by the expectation conditional on the 
measurements of other geotechnical parameters 
within the data point. 

Generally, abnormal values are less probable 
than normal values. Therefore, it is assumed that 
there is only one variable with an abnormal 
value for an identified outlier point. The 
abnormity degree (AD) of the i-th variable’s 
value within the n-th data point is defined as 
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where ( )
1[ ,..., ,..., ]i

n n ni nDy y yy ; niy is the 
expectation conditional on the measurements of 
other geotechnical parameters in yn, i.e., niy   
 1 , 1, , 1 DE | ,..., , ,..., , , ,ni n n i n i n ny y y y y  x β  . Herein, it 

is assumed that xn is always normal. If yni is an 
anomaly, and the measurements of other 
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geotechnical parameters are inliers, then yn
(i) can 

be regarded as the corrected data. The more 
abnormal the i-th variable’s value is, the smaller 
the probability of original data is compared to 
the probability of the corrected data, hence a 
larger AD. Therefore, the variable with the 
largest AD can be identified as the abnormal 
value within the data point. 

For each outlier identified by block-wise 
outlier detection, AD of each variable is 
calculated given β and Σ, and the variable with 
the largest AD is denoted as the anomaly given β 
and Σ. Similarly, repeatedly performing the 
component-wise outlier detection for all 
posterior samples of β and Σ, and then the 
probability of the component-wise outlier can be 
obtained. 

4. Implementation procedure 
The implementation procedure of the proposed 
outlier detection is as follows: 
(1) Take logarithm of the original geotechnical 

data, and construct X with ln(v) and Y with 
the rest geotechnical parameters. 

(2) Find the maximum likelihood estimator of β 
and Σ using Eqs. (8)-(9), and calculate the 
maximum likelihood. 

(3) Generate posterior samples of β and Σ using 
BUS with subset simulation as described in 
Section 2.3. 

(4) Repeat the block-wise outlier detection (see 
Section 3.1) for each posterior sample of β 
and Σ and calculate the probability of the 
outlier point. The points with outlier 
probability greater than 0.01 are recognized 
as the block-wise outliers. 

(5) Repeat the component-wise outlier detection 
(see Section 3.2) for each posterior sample of 
β and Σ and calculate the probability of the 
abnormal variable. The variable with the 
largest outlier probability within the 
abnormal date point identified in Step (4) is 
considered as the component-wise outliers. 

5. Illustrative example 
The proposed outlier detection for multivariate 
and sparse site-specific geotechnical data is 
applied to a geotechnical dataset from a clay site 
in the ISSMGE TC304 database (Ching and 
Phoon, 2012), as shown in Table 1. Each data 
point contains five geotechnical parameters 
measured at a certain depth, including liquidity 

index (LI), vertical effective stress (σ'v), 
preconsolidation stress (σ'p), remolded undrained 
shear strength (su

re), and undrained shear 
strength (su). Four values are replaced by 
outliers as marked with a star in Table 1. 

Table 1. Geotechnical dataset from a clay site. 

ID LI 
σ'v  

(kPa) 
σ'p  

(kPa) 
su

re  
(kPa) 

su  
(kPa) 

1 0.98 3.70 13.87 0.88 5.95 
2 1.31 7.40 12.95 0.59 4.29 
3 1.78 13.87 9.25 0.39 4.07* 

4 1.51 17.57 17.57 0.39 5.00 
5 1.31 21.27 45.12* 0.39 5.95 
6 1.34 24.05 21.27 0.59 6.43 
7 1.63 27.75 24.05 0.39 7.62 
8 1.42 31.45 24.97 0.68 16.74* 

9 2.52* 35.14 29.60 0.68 7.86 
10 1.27 39.77 29.60 0.78 12.38 
11 1.21 44.39 30.52 0.88 13.10 
12 1.38 49.02 36.07 0.98 13.81 
13 1.45 51.79 55.49 1.18 17.38 
14 1.51 58.27 60.12 1.37 13.10 
15 1.22 61.97 48.09 0.98 18.57 
16 1.18 66.59 72.14 0.88 17.14 
17 0.93 71.21 97.11 1.18 26.19 

Note: LI = liquidity index; σ'v = vertical effective 
stress; σ'p = preconsolidation strength; su

re = remolded 
undrained shear strength; su = undrained shear stress; 
* represents the artificial outliers. 
 

During the Bayesian inference, the scaling 
factor c in BUS can be readily obtained using 
the maximum likelihood estimator of β and Σ 
given by Eqs. (8)-(9). For this example, lnc = 
−0.3644. Subset simulation is then applied to 
generate posterior samples of β and Σ, with the 
conditional probability set as 0.1, and the 
number of samples in each level set as 50,000. 
Eventually, 461,070 posterior samples of β and 
Σ are obtained. 

Applying the proposed outlier detection to 
the data in Table 1 based on the generated 
posterior samples of β and Σ, the block-wise 
outliers can be identified as shown in Table 2. 
With a threshold of 0.01, the outlier points 
identified are point no. 5, 9, 14 and 8, in a 
descending probability order. Among all 
artificial outliers (point no. 3, 5, 8 and 9), point 
no. 5, 8 and 9 are correctly identified. Point no. 
3 is not declared as an outlier, which is because 
the outlier only slightly deviates from the norm. 
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Table 2. Probability of block-wise outlier. 

ID Probability ID Probability 

1 0.0000 10 0.0000 
2 0.0000 11 0.0000 
3 0.0059 12 0.0000 
4 0.0000 13 0.0000 
5 0.4684 14 0.0495 
6 0.0000 15 0.0000 
7 0.0000 16 0.0000 
8 0.0176 17 0.0026 
9 0.4559   

 
Then, implement the component-wise outlier 

detection algorithm for each identified outlier 
point. The probability of component-wise outlier 
is listed in Table 3. Outliers in data no. 5, 8 and 
9 are successfully identified. Although there is 
no artificial outlier in data no. 14, it is still 
identified as an outlier. Note that the identified 
component-wise outlier of no. 14 is the largest 
value among the observations of su

re. Therefore, 
it is reasonable to consider it as an outlier to 
some extent. 

Table 3. Probability of component-wise outlier. 

ID LI σ'P su
re su 

5 0.0000 0.6128 0.3871 0.0000 
8 0.0000 0.0003 0.0000 0.9997 
9 1.0000 0.0000 0.0000 0.0000 

14 0.0003 0.0117 0.9851 0.0002 

 

6. Conclusions 
Anomalies in geotechnical data are inevitable 
and have great impacts on site characterization. 
Site-specific geotechnical data is usually 
multivariate, sparse and might has a certain 
trend. This study proposed an outlier detection 
algorithm that considers the influence of 
statistical uncertainty caused by limited data 
through Bayesian method. A multivariate 
normal model with linear regression is used to 
describe the geotechnical data. Posterior samples 
of model parameters are generated by BUS with 
subset simulation. With the posterior samples, 
the probability of outlier can be obtained, both 
block-wise and component-wise. The proposed 
algorithm is applied to a dataset from a clay site 
with some artificial outliers. The results show 
that the outliers can be effectively identified by 
the proposed outlier detection algorithm. 
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