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Abstract: Outlier is attached importance in statistics and engineering, because it might result in misleading 
identification results. Many outlier detection methods have been proposed such as least median of squares 
(LMS), minimum volume of ellipsoid (MVE) and principal component analysis (PCA) etc. However, the 
mathematical complexity of many proposed methods hampers their practical uses. This paper develops a method 
which is easy to understand, simple to implement, called resampling half-means with Mahalanobis distance 
(RHM-MD). It can be used to detect outlier in case of multiple dimensional and small sample problem 
considering the correlation between different variable characteristics. Not only the outlier row vector but also 
the outlying component in the vector can be detected. The proposed method is illustrated and validated through 
a set of five dimensional correlated data which is simulated with ten known outliers. It turns out that the 
proposed method can detect the outliers rationally. Finally, RHM-MD is applied to detect outliers in the real 
data provided by TC304 for the student contest.  
Keywords: Outlier detection, half-means, Mahalanobis distance, multiple dimension, correlation.  
 

1. Introduction 
An outlying observation, or “outlier,” is one 

that appears to deviate markedly from other 
observations (Frank 1969). It can be detected by 
its abnormal performance, because it has some 
characteristics that are distinct from other 
surrounding data. There are many reasons 
leading to outliers, most of which are caused by 
measurement error, e.g., human error, instrument 
failure, or unknown environmental disturbances 
(Hawkins 1980; Barnett and Lewis 1994). It is 
also possible that such outliers do exist in real 
data. In practice, directly incorporating 
measurements or observations with outliers into 
data analysis might lead to significant bias. The 
purpose, therefore, of outlier detection is to find 
out the data patterns implied by a small amount 
of abnormal data that are significantly different 
from the conventional data patterns (Han and 
Kamber 2001), so as to eliminate them and 
reduce their impacts on statistical inferences 
(Rousseeuw 1991).  

The traditional method for outlier detection 
includes least median of squares (LMS), 
minimum volume of ellipsoid (MVE) and 

principal component analysis (PCA) 
(Rousseeuw 1987). Rousseeuw extended the 
median methodology to a robust regression 
technique, i.e., LMS. The LMS is based on the 
minimum median of squares, because the 
median will be unaffected by outliers for a large 
number of observations. Such modifications 
have no effect on the sample median. Although 
LMS could find all unusual observations, but 
may erroneously identify normal observations as 
outliers (Fung 1993). MVE is a robust 
multivariate method for dealing with the 
problem caused by multiple outliers (Rousseeuw 
1985). The main idea is to assume that all the 
sample data constitute a dimensional 
hyper-elliptic sphere. Picking at least half of the 
samples from all the sample data, and searching 
for the smallest volume of hyper-ellipsoids. The 
problem with the MVE method is that it requires 
expensive computation cost, especially in the 
case of multi-dimensional problems because of 
profound computational complexity of 
hyper-ellipsoid. There are also numerous 
methods for outlier detection developed based 
on the principal component analysis (PCA) of 
the covariance matrix (Mardia and Kent 1979). 



The key idea of the outlier detection method 
based on matrix decomposition is to use 
principal component analysis to find those 
outliers that violate the correlation between data. 
Singular value decomposition (SVD) is a 
numerically stable method for principal 
component analysis (William and Stephen 1998). 
After that the genetic or evolutionary methods 
(Walczak 1995) and projection pursuit 
(Ammann 1993) are utilized for robust 
PCA/SVD, while the shortcoming is that it 
requires unreasonable computational efforts in 
high dimension problems (Woodruff and Rocke 
1994). 

While these methods are theoretically sound, 
the complexity of many proposed methods, in 
terms of both comprehension and 
implementation, hampers their practical uses. 
Considering the problem being explored is to 
find out the outliers from the site investigation 
dataset at a clay site, which is a 
multi-dimensional and small sample problem. 
William and Stephen (1998) proposed a method 
called resampling by half-means (RHM) to 
detect outliers by studying the distribution of 
observation vector lengths obtained by sampling 
without replacement from the original data set. 
RHM is easy to understand, simple to implement, 
and it can also tackle the difficulties under the 
assumption of independent variables. In this 
paper, RHM is extended to be feasible in 
multi-dimensional outlier detection problems, 
called RHM-MD, which considers correlation 
between various characteristics through 
calculating Mahalanobis distance. Row vectors 
with outliers in a data matrix X can be found, 
and then Euclidean distance which is calculated 
according to each de-trend and normalized 
column vector of each variable in the data 
matrix can reflect the contribution of every 
component to the occurrence of outlier.  

This paper starts with development of the 
RHM-MD method, followed by illustration and 
validation of the proposed approach using a set 
of simulated data. Then, the RHM-MD is 
applied to solve the TC304 student contest 
question.  

2. Methodology 

2.1 Outlier detection method RHM-MD 
The RHM-MD method consists of two simple 
concepts, Mahalanobis distance (MD) and 
resampling method, which are introduced briefly 
in this section and combined to develop the 
proposed method. 

The Mahalanobis distance was proposed by 
the P. C. Mahalanobis (Mahalanobis 1936) and 
represented the covariance distance of the data. 
For a p-dimensional multivariate vector Xi (i = 1, 
2, ..., n) the MD is defined as: 

 
1( ) ( ) ( )  T

i iiD x μ Σ x μ  for i = 1,..., n   (1) 

where Xi = [xi,1, xi,2, ..., xi,p]is the i-th row vector 
in the data matrix X; X=[X1, X2, ..., Xn]T is a 
np data matrix consisting of n observations and 
p variables; μ and Σ are the 1p row vector 
which is the estimated arithmetic mean of each 
variable and the pp sample covariance matrix 
containing the correlation between different 
variables, respectively. Eq. 1 provides an 
effective way to calculate the similarity of two 
unknown sample sets (Mark and Tunnell 1985). 
It takes into account the connection between 
various characteristics and is scale-invariant, 
which is independent of the measurement scale. 
The Mahalanobis distance gives a judgmental 
observation. The larger the distance is, the more 
likely the point is an outlier. However, if μ and Σ 
are calculated according to entire data matrix X 
containing the outliers, the μ and Σ estimators 
will be affected by the outliers leading to 
misidentification of outliers. It is hence 
important to estimate μ and Σ based on the 
regular data set to detect outliers, which are 
however unknown before analysis. Thus, in the 
RHM-MD method, 50% of the total set of data 
are determined to be normal data (William and 
Stephen 1998). The theoretical connotation is 
that half of the data must be normal, otherwise it 
is meaningless to search for outliers. For 
reasonably choosing the half of the data, a 
resampling method is adopted in this paper. 

Resampling methods are used to generate a 
distribution of statistics of interest by repeatedly 
calculating these statistics from randomly 
selected subset of the data (Hartigan 1969). If 
the estimation results of each data subset are 
consistent or relatively close, the authenticity of 
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the inferred results is more convincing since 
each sample subset is independent and the 
sampling method is the same. Outliers are 
detected by examining the distribution of MDs 
obtained from sampling without replacement 
from the original data set (Efron 1979).  

Fig. 1 shows a flow chart for the 
implementation of RHM-MD. Initially, select 
the subset of data without replacement from the 
entire sample X until up to the size of 50% (i.e., 
n/2) of the X. These sampled observations are 
placed in a new matrix, X(k) (i.e., k=1, ..., Nb, 
where Nb = the number of resampling). Then the 
covariation matrix Σ(k) and the mean μ(k) of 
X(k) are calculated to determine the k-th center 
of data subset. Then, the MDs of entire data X 
are calculated based on the μ(k) and Σ(k) using 
Eq. 1. Store the D(k) and repeat the steps above 
until the prescribed number of resampling Nb is 
reached. D stores all the D(k), and finally a 
histogram of all Mahalanobis distances in D can 
be made to see distribution of MDs.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

Figure 1. Flow chart of RHM-MD 

2.2 Determination of outliers 
For determining the rows of outliers in the data 
matrix X, the RHM-MD method inherently 
provides a simple way to identify outlying 
observations. Mahalanobis distances of all the 
samples in D are sorted. The upper 5% distances 
in D are considered as abnormal distances, 
which means that the corresponding data are 
suspicious data points. Then, the number of 
times each data appears in the upper 5% of the 
distance is counted. Considering that if there is 
no outlier, theoretically, the count of each data 
point occurring in the upper 5% of D the 
distance will be evenly distributed. If the 
number of resampling is relatively large, the 
percent of each point in the upper 5% of the 
distance will be approximately stable at 1/n (i.e., 
n is the number of data points). If the X contains 
one or more outliers, the percentage of outliers 
in the upper 5% of samples will be greater than 
1/n. 1/n can be considered as a robust criterion 
for user to detect outliers. 

When dealing with multidimensional data, 
the above work provides a simple way to 
determine row vectors of outliers Xout

i and 
regular data Xr

i. To identify the exact outlier 
component xout

i,j (e.g., i = 1, 2, ..., n; j = 1, 2, ..., 
p) in the outlier row vector Xout

i, the Euclidean 
distance between each variable in Xout

i and the 
center of corresponding variable, which is 
estimated using regular data, is calculated. The 
larger the distance represents that the component 
makes the greater contribution to the row of data 
to be an outlier Xout

i. In case of the impact of 
trend and scale of variables on outlier detection, 
the trend of the column vector X·,j is removed 
and then residual vector ε·,j= [ε1,j, ε2,j, ..., εn,j]T of 
the j-th column vector X·,j = [x1,j, x2,j, ..., xn,j]T is 
normalized. The Euclidean distance dout

·,j 
between each variable of normalized εout

·,j and 
the center of corresponding variable normalized 
εR

·,j is calculated to determine the most probable 
outlying variable xout

i,j in the outlier row vector.  

3. Illustrative examples 
For illustration and validation, the proposed 
method is applied to a set of simulated data 
which is simulated from a weighted mixture 
distribution of 5-dimensions normal distribution 
and triangular distribution in this section. Then, 
the proposed method is applied to detecting 

Provide input data X, determine the 
number of resample Nb, and set k=1 

Calculate the covariance matrix; Σ(k). 
mean matrix; μ(k) based on X(k). 

Randomly select the 50% row vectors of 
the data X, which are denoted as X(k).  

Calculate the MDs of entire data X based 
on Σ(k) and μ(k); D(k). 

k = Nb 

MDs of all the samples in D are sorted. 

Count the frequency of each suspicious 
data point in upper 5% distances in D. 

Obtain row vectors of outliers 

No k=k+1 

Yes 



outliers in the dataset provided for TC304 
student contest.  

3.1 Simulated example 
To generate the dataset that contains both regular 
data points and outliers, two sub-datasets are 
generated, namely the regular dataset Dr and the 
outliers Df. In order to generate this set, a 
weighted mixture distribution of entire dataset 
Dt is used (Yuen and Mu 2012):  

( ) (1 ) ( | , ) ( )      
t t f

p D G D f D        (2) 

where the multi-dimensional normal distribution 
G(Dt| μ, Σ) is used for the regular data points, 
and f(Df) is used for the outliers. In this 
simulated examples, G(Dt| μ, Σ) is a 
multi-dimensional normal distribution and it can 
be rewritten as: 

1

1/ 22 / 2 2
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1 1 1
exp ( ) ( )
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R
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 
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x x
(3) 

where μ in Eqs. 2 and 3 is the mean of the 
P-dimensional random vector X; R is a P P 
correlation matrix; σ is the standard deviation 
and it is taken as constant; f(Df) is a mixture of 
triangular distributions (Yuen and Mu 2012): 

( )=0.5 ( )

0.5 ( )

| 5 , 4 , 3

| 3 , 4 ,5

f f
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f D T D

T D
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   (4) 

where T(Df | l, m, r) is a triangular distribution: 
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
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
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(5) 

where Df = m is the mode value of the triangular 
distribution. 

The variable ρ in Eq. 2 is the contaminated 
level parameter controlling the weighting of the 
contaminated distribution f(Df). This parameter 
can be interpreted as the probability of a data 
point being an outlier. It is worth noting that the 
value of ρ and the probability distributions in 
Eqs. 3 and 4 are assumed unknown in the 
identification process. They are only used to 
generate of data points. Note that the expected 
number of outliers N0 in the entire dataset Dt is 

Table 1. Description of simulated data 

Dimension P N N0 σ ρ 

5 30 10 1.5 0.33 

 

0  N N                (6) 

where N is the number of entire dataset. Then, 
the proposed method is used to detect outliers in 
the entire dataset Dt. Table 1 summarizes the 
dimension of simulated data, the number of 
entire dataset N, the number of outlier dataset N0 
and the contaminated level parameter ρ in Eq. 6. 

Specifically, the regular dataset is generated 
from a 5-dimensional normal distribution G(Dt| 
μ, R, σ) with [0,0,0,0,0] 1.5  ， , and  

1 0.82 0.67 0.55 0.45

1 0.82 0.67 0.55

1 0.82 0.67

1 0.82

. 1

R

sym

 
 
 
 
 
 
  

    (7) 

A total of 30 data points are simulated with 
the expected number of 10 outliers because the 
contaminated level 0.33 is imposed. Fig. 2 
shows the results of the simulation run, where 
the 20 regular data points and 10 outliers are 
represented by squares and circles, respectively. 

Fig. 3 displays MDs histogram of all the 
samples D from resampling procedure described 
in the section 2.1 and the number of resampling 
is Nb = 5105. The appearance of part B in Fig. 3 
corresponds to extreme MDs caused by the 
suspicious outliers. The higher the extreme 
distance is, the more likely the points are 
outliers, which provides a sound visual 
diagnostic for determining which distance is 
selected as outliers that belong to another 
distribution. As shown in Table 2, there are 
sixteen suspicious row vectors occurring in the 
upper 5% MDs (i.e., the number of 5% MDs is 
5%30Nb=7.5104, which is equal to the sum 
of the third column in Table 2). The frequency 
of each suspicious data point in upper 5% MDs 
in D indicates that nine of them (see bold results 
in Table 2) are greater than the criterion, i.e. 1/n 
= 0.033. In general, identified outliers index are 
nearly consistent with known outliers’ index 
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Figure 2. Simulated data and identified outlier data 

 

except the 30-th row vector. However, the 
frequency of the 30-th vector, i.e., 0.0297, is 
closed to 0.033. In addition, the Euclidean 
distances dout

·,j of identified outliers, which are 
calculated based on the procedure proposed in 
Section 2.2, are shown in Table 3. The most 
probable outlying variables with the largest 
distance, which are framed by black lines in 
Table 3, are shown in Fig. 2 by red crosses 
correspondingly. Compared with the known 
simulated outliers represented by blue circles in 
Fig. 2, there is only one outlying data point, 
which is not detected and it corresponds to the 
30-th row vector in Table 2. This represents that 
the proposed method can detect the most 
probable outliers and dout

i,· can effectively reflect 
the contribution of variables to the row of data 
to be an outlier Xout

i. 
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Figure 3. Distribution of Mahalanobis distances 
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Table 2. RHM-MD results of the simulated data 

Known outlier 
row index 

Row index Counts 
Frequency 

(%) 

 1 273 0.04 
3 3 65926 8.79 
4 4 35918 4.79 
9 9 28597 3.81 

12 12 152418 20.32 
13 13 32996 4.40 
14 14 27160 3.62 
15 15 249991 33.33 
 16 1116 0.15 

19 19 70182 9.36 
 20 723 0.10 

21 21 61603 8.21 
 25 210 0.03 
 27 80 0.01 
 28 416 0.06 

30 30 22299 2.97 

Table 3. Results of Euclidean distances for the 
simulated case 

Identified 

outlier index 
dout

·,1 dout
·,2 dout

·,3 dout
·,4 dout

·,5 

3 0.34 0.40 3.06 0.70 0.21 

4 0.29 0.37 1.70 0.36 0.11 

9 0.59 0.44 0.56 0.79 2.36 

12 0.16 2.88 0.97 0.77 0.67 

13 0.70 0.09 0.20 0.10 2.82 

14 1.17 1.62 0.30 0.26 2.89 

15 0.73 0.61 0.57 4.20 0.24 

19 0.36 2.23 0.68 0.54 0.40 

21 0.80 1.22 2.88 0.07 0.18 

 
3.2 Dataset for TC304 student contest 

3.2.1 Description of the data 
This subsection applies the proposed method to 
detect outliers in dataset for TC304 student 
contest, which is obtained from a clay site. As 
shown in Table 4, each row represents the data 
from a certain depth, including liquidity index 
LI, vertical effective stress σ'v, preconsolidation 
stress σ'p, molded undrained shear strength Su

re, 
undrained shear strength Su. The dataset contains 
some deliberately modified data. Moreover, 
geotechnical data itself contain significant 
uncertainty, which results in great difficulties to  

Table 4. TC304 Student Contest Data 

Index  LI σ'v(kPa) σ'p(kPa) Su
re(kPa) Su(kPa) 

1 0.98 3.7 13.87 0.88 5.95 

2 1.31 7.4 12.95 0.59 4.29 
3 1.78 13.87 9.25 0.39 4.07 

4 1.51 17.57 17.57 0.39 5 

5 1.31 21.27 45.12 0.39 5.95 

6 1.34 24.05 21.27 0.59 6.43 
7 1.63 27.75 24.05 0.39 7.62 

8 1.42 31.45 24.97 0.68 16.7 

9 2.52 35.14 29.6 0.68 7.86 

10 1.27 39.77 29.6 0.78 12.4 
11 1.21 44.39 30.52 0.88 13.1 

12 1.38 49.02 36.07 0.98 13.8 

13 1.45 51.79 55.49 1.18 17.4 

14 1.51 58.27 60.12 1.37 13.1 

15 1.22 61.97 48.09 0.98 18.6 
16 1.18 66.59 72.14 0.88 17.1 

17 0.93 71.21 97.11 1.18 26.2 

 
the outlier detection.  

Table 5 shows the results of the frequency of 
each suspicious data point in upper 5% MDs in 
D. There are seventeen row vectors occurring in 
the upper 5% MDs, among which seven rows 
have the frequency greater than the criterion, i.e. 
1/17 = 0.0588. Row vectors of 1, 5, 8, 9, 13, 14, 
17 are identified as outliers through RHM-MD 
with 105 times resampling. The number of 
resampling is much greater than the all probable 
sample combinations of the 50% data subset to 
ensure the robustness of the method. The 
frequency calculated based on the samples from 
RMH-MD method can indicate the possibility of 
the outliers. Therefore, the 16-th row vector with 
5.51% frequency still have the possibility to be 
the outlier.  

Table 6 shows Euclidean distances of 
identified outliers, which are calculated based on 
the procedure proposed in the section 2.2 and 
used to determine the most probable outlying 
variable in the outlier row vector. To further 
illustrate results, two-dimensional scatter plots 
are drawn in Fig. 4 to show the outliers 
identified by the proposed approach. As shown 
in Fig. 4, the identified outliers represented by 
red cross deviate markedly from other data. It is 
also shown that the regular points (see circle in 
Fig. 4) exhibit variability to some extent, but 
their variability is acceptable. 
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Table 5. RHM-MD results of the TC304 data 

Row index Counts Frequency (%) 

1 5790 6.81 
2 1100 1.29 
3 1282 1.51 
4 91 0.11 
5 5544 6.52 
6 68 0.08 
7 299 0.35 
8 13839 16.28 
9 16293 19.17 
10 71 0.08 
11 239 0.28 
12 1049 1.23 
13 5005 5.89 

Table 5. RHM-MD results of the TC304 data (Cont’d) 

Row index Counts Frequency (%) 

14 12408 14.60 
15 496 0.58 
16 4681 5.51 
17 16745 19.70 

 

4. Conclusion  
This paper developed a simple and robust the 
outlier detection method RHM-MD, which 
combines the resampling method and 
Mahalanobis distance. The proposed method can 
be used to multiple dimensional and small 
sample problem with considering the correlation  
 

 

Figure 4. Regular data and identified outliers in the dataset for TC304 student contest 
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Table 6. Results of TC304 case 

Identified 
outlier index 

LI 
dout

·,1 
σ'v 

dout
·,2 

σ'p 

dout
·,3 

Su
re 

dout
·,4 

Su 

dout
·,5 

1 25.2 24.6 30.5 49.5 29.8 
5 7.7 12.9 40.5 4.0 6.5 
8 0.5 0.3 2.1 2.5 25.2 
9 41.4 3.6 3.2 2.2 10.3 

13 8.6 16.4 0.6 14.4 1.6 
14 12.2 16.6 0.6 23.1 21.8 
17 4.4 25.7 22.5 4.4 4.7 

 
between different variable characteristics. 
Moreover, the Euclidean distance of each 
variable is used to determine the most probable 
outlying variable. A set of five dimensional 
simulated data, which contains 10 outliers, is 
used to validate the proposed method. The 
outlier detection results show that the proposed 
method is a feasible way to detect the outlying 
row vector, which provides a robust way for 
multi-dimensional outlier detection, and can 
effectively find the most probable outlying 
variable in the outlier row vector. Finally, the 
proposed method detected outliers in dataset for 
TC304 student contest reasonably. 
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