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Abstract: This study presents an efficient Bayesian framework for real-time predictions of embankment settlement. It consists of 

two major components, (1) driving Bayesian analysis through BUS in a single simulation run to generate valuable information that 

will be directly employed in future real-time prediction; (2) target Bayesian analysis to provide posterior settlement predictions, at 

negligible additional computational efforts, when new monitoring data become available. The proposed approach is illustrated and 

validated by an embankment settlement prediction example provided by TC304/TC309 for student contest. 
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1. Introduction 

Bayesian analysis, widely applied for geotechnical 

performance predictions (e.g., embankment settlement), 

can be computationally prohibitive for real-time 

predictions as repeated Bayesian inferences are required 

due to the timely acquired monitoring data at various 

monitoring stages. Considering the underlying 

correlations behind Bayesian analysis when incorporating 

these data (e.g., y* and y), posterior or conditional 

samples for these data generally overlap. To make use of 

samples generated when considering y* for posterior 

sampling of y, without repeated Bayesian simulations, 

this study proposes an efficient time-based auxiliary 

Bayesian updating framework for real-time predictions of 

embankment settlement as new data become available. To 

achieve this, this work starts with the development of the 

proposed framework, followed by the illustration and 

validation of the proposed approach using an 

embankment example provided by TC304/TC309. 

2. Time-based auxiliary Bayesian updating 
As schematically displayed in Fig. 1, the proposed 
approach starts with driving Bayesian analysis by 
selecting driving data y* at certain monitoring phase, 
which can be achieved by BUS with subset simulation 
(SuS) (Straub and Papaioannou, 2015). During this 
process, independent subsets (Ωi, i = 0, 1, …, m) can be 
obtained based on the m levels of SuS and their 
probabilities (i.e., P(Ωi)) can be estimated (Au, 2007). 
Note that N+N(1-p0)(m-1) samples are returned, along 
with settlement evaluations corresponding to each sample 
in Ωi, as demonstrated in Fig. 1 through steps (a) to (b). 

When monitoring data yj (e.g., yj = [y1, y2, …, yj]) 
become available, posterior predictions can be performed 
using response conditioning method (RCM), namely, 
posterior conditional samples within Ωi can be directly 
selected according to the failure event Fj defined as 
(Straub and Papaioannou, 2015) 

 { ( | ) 0}j jF w c L   θy  (1) 

where w is a standard uniform variable; θ are a vector of 
random variables concerned; c is the constant likelihood 
multiplier, and L(θ|yj) represents the likelihood function 
reflecting the probabilistic relations of measurements yj 

and predicted quantities M(θ) through model error εj, 
which is often assumed as normal and additive. 

Based on these selected failure samples in Ωi, shown 
by filled circles in Fig. 1 (c), another new sample space 
Oj,i is established, and their respective normalized failure 
probability P(Oj,i) can thus be estimated. According to 
BUS, samples in Oj,i are distributed as posterior 
distribution f(θ|yj) with occurrence probability P(Oj,i), 
therefore, posterior predictions tY at time Tt (t > j) can be 
unbiasedly evaluated as 

 0 , ,( ( )| ) ( )m
it t j i j iY E M O P O  θ  (2) 

herein, E(Mt(θ)|Oj,i) denotes the mean predicted quantity 
conditional on samples in Oj,i. 

Note that yj change with time, which indicates that 
target Bayesian analysis, shown in Fig. 1 (c) and (d), can 
be repeatedly conducted, where computational efforts 
remain unchanged, as illustrated in the following section. 

 
Fig. 1. Schematic diagram of the proposed approach 

3. Results and validation 

Following the information given by TC304/309 and 
Jostad et al (2018), numerical finite element model (FEM) 
of Ballina embankment is firstly established for 
illustration of the proposed approach. Fig. 2 displays the 
numerical model, along with the soil layers with their 
respective constitutive models adopted. Parameters of the 
estuarine layer are considered probabilistically and their 
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prior statistics are summarized in Table 1, where uniform 
distributions are assumed. Based on these, the proposed 
approach can be illustrated with monitoring points (e.g., 
M0-M3, HPG1 shown in Fig. 2) as follows. 

 
Fig. 2. Finite element model of Ballina embankment 

Table 1. Prior statistics of uniform parameters 

Parameter 
Nominal  

Value 
Typical  
Range 

Nominal  
Value 

Typical  
Range 

 Estuarine clay (1) Estuarine clay (2) 

λ* 1.41e-1 [0.84, 1.98]e-1 2.32e-1 [1.39,3.25]e-1 

κ* 2.20e-2 [1.32, 3.08]e-2 3.60e-2 [2.16,5.04]e-2 

μ* 4.25e-3 [1.70, 6.80]e-3 7.00e-3 [2.80,11.20]e-3 

φ' 36.0 [20.0, 52.0] 

kx, m/day 1.00e-3 [0.40, 1.60]e-3 

ky, m/day 0.40e-3 [0.16, 0.64]e-3 

POP, kPa 24.0 [14.0, 34.0] 

3.1 Results considering M0-M3, respectively 
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Fig. 3. Settlement predictions considering M0-M3, respectively 

Driving Bayesian analysis in this subsection are 
respectively performed for M0 to M3 by selecting their 
respective first data as driven data, shown by stars in Fig. 
3, from which N = 10000, p0 = 0.1 for SuS, and εj ~ N (0, 
0.1). Then based on these, posterior predictions can be 
directly estimated as newly required monitoring data 
become available. For illustration, Fig. 3 displays the 
predicted settlements considering only one case (i.e., data 
of 324 days till June 27, 2014), where results from the 
reference BUS (i.e., N = 10000, p0 = 0.1) are also plotted 
for validation. As seen in Fig. 3 (a) for M0, the predicted 
settlements obtained from the proposed approach, shown 
by line with “x”, have a good agreement with real 
measurements. Moreover, there is a great consistency 
between the predicted settlements evaluated from the 
proposed approach and BUS (shown by line with circles), 
demonstrating that the proposed method can provide 
real-time settlement predictions considering different 
amount of monitoring data. The same observations can be 
obtained for M1 to M3 as well, shown from Fig. 3 (b) to 
Fig. 3 (d). 

3.2 Results considering measurements in HPG1 
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Fig. 4. Settlement predictions considering HPG1 

To further demonstrate the proposed approach, this 
subsection performs driving Bayesian analysis considers 
14 monitoring points in HPG1 at Oct. 3, 2013. Similarly, 
posterior predictions considering the following six phases 
(i.e., those in Fig. 4) can be sequentially obtained with 
ease through the proposed approach. For demonstration, 
settlement predictions incorporating the first five set of 
monitoring data (e.g., those from Oct. 3, 2013 to May 6, 
2014) are displayed in Fig. 4, with each color denoting 
one monitoring phase. As observed, the proposed method 
can provide consistent predictions with real data for the 
five set of data incorporated. Besides, future predictions 
(e.g., those at June 1, 2015 and June 1, 2016) can be 
obtained as well. Moreover, the obtained settlements for 
different monitoring phases are validated with the BUS 
method and great agreement is achieved. This, once again, 
demonstrates the proposed approach for real-time 
Bayesian updating of embankment settlement with more 
driving data. However, further investigations of the 
proposed approach are out of the scope of this work. 

4. Conclusions 
This study proposed an efficient Bayesian framework for 
real-time predictions of embankment settlement. It starts 
with driving Bayesian analysis in a single simulation run, 
based on which target Bayesian analysis is performed for 
settlement predictions as new monitoring data becomes 
available. Through an illustrative example, it is 
demonstrated that the proposed approach can provide 
satisfactory predictions when compared with real data 
and is efficient for real-time predictions of embankment 
settlement. 
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