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Abstract: Bayesian method has been widely used for underground soil stratification based on the profile of soil 

behavior type index Ic calculated from raw CPT data. However, in the case of high-dimension, the considerably 

computational effort is the mainly burden and hamper for its application in practice. This study develops a novel 

Bayesian framework that not only contains the statistical characteristics of Ic quantified by random field model, 

but also implements the corresponding engineering judgments in the context of Roberson SBT chart. An 

effective Bayesian updating technique, namely Reversible Jump Markov Chain Monte Carlo (RJMCMC), is 

applied to solving the Bayesian equations. The proposed method is illustrated and verified using four real-world 

datasets. Cases studies show that using RJMCMC for Bayesian framework is capable of contributing to 

remarkably computational saving, meanwhile identifying the most probable soil stratigraphy (including the 

number and boundaries of soil layers). Finally, the impact of engineering judgments for soil stratification is 

discussed. 
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1. Introduction 
In the past few decades, cone penetration test 

(CPT) has been gaining increasing use 
worldwide because it is a rapid, repeatable, 
economical technique that provides nearly 
continuous measurements over the depth 
(Roberson 2009). Despite the fact that no soil 
samples are recovered from CPT for visual 
inspection and laboratory testing, the 
measurements of mechanical responses of soil 
during penetration are obtained, such as cone tip 
resistance qc, sleeve friction fs, and pore water 
pressure u, etc. These measurements could be 
used for identification of soil stratigraphy. In 
general, it consists of two major steps: (a) 
determine the soil type at each testing depth (i.e., 
soil classification) based on CPT measurements, 
yielding a profile of the soil type along depth; 
and (b) identify the number N and boundaries 
(or thicknesses) DN = [D0, D1, D2, …, DN-1, DN] 
of soil layers based on the profile of the soil type. 
Among various CPT-based soil classification 
systems, the use of “Soil Behaviour Type” (SBT) 

index, denoted by Ic, is extensive (Roberson and 
Wride 1998, Roberson 2009). However, there is 
a profound challenge in identifying soil 
stratigraphy (i.e., determining N and DN) from a 
single profile of Ic due to the discrete nature of 
CPT limited data, the inherent spatial variability 
of Ic along depth and the boundary effect 
between adjacent soil layers. 

Several approaches have been developed to 
delineate soil stratigraphy using CPT data in an 
objective and quantitative way, such as wavelet 
transform modulus maxima method (Ching et al. 
2015), semi-supervised clustering-based 
approach (Wang et al. 2019), and Bayesian 
methods (Cao and Wang 2013; Wang et al. 2013; 
Cao et al. 2019). Among them, the Bayesian 
methods are able to provide both the “best” 
estimates of N and DN with some prescribed 
criterion for soil stratification and the 
information on the uncertainty in their estimates. 
Nevertheless, one common challenge of these 
methods is computationally complexity and 
costs. This is because that the Bayesian method 
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would require solving high-dimensional 
integrals and nonconvex optimization problem 
(Ching et al. 2015). On the other hand, 
engineering judgments are supposed to be 
considered as a part of prior knowledge in 
Bayesian inference to stratify soil layers based 
on the Ic profile. However, it is a subjective and 
unquantifiable manner due to engineers of 
different experience, expertise, and judgments 
(Cao et al. 2019). 

This work develops a novel Bayesian 
framework for underground soil stratification 
based on the profile of Ic. Under the proposed 
Bayesian framework, the statistical 
characteristics of Ic are taken into account 
through random field model, and the 
engineering judgments are also explicitly 
incorporated in the Bayesian framework. Then, 
an effective Bayesian updating technique called 
Reversible Jump Markov Chain Monte Carlo 
(RJMCMC) is utilized for Bayesian analysis to 
conduct, automatically and fast, underground 
soil stratification (Green 1995, Dettmer et al. 
2012). RJMCMC is an extension of the popular 
Metropolis–Hastings algorithm, designed to 
allow movement trans-dimensional inversion. 
This study starts with Bayesian framework for 
soil stratification based on N random field model, 
followed by illustrating RJMCMC algorithm 
and its key movements for computational 
difficulty in solving Bayesian equations. In the 
end, the proposed approach is demonstrated and 
verified through four sets of real-world data 
given by TC304/309 Student Contest. 

2. Bayesian framework for soil stratification 
For given profile of Ic and engineering 

judgments (i.e., Robertson SBT chart), soil 
stratigraphy (i.e., a combination of DN and N) is 
quantified by their joint probability density 
function (PDF) p(DN, N |ξ, T) within the 
Bayesian framework, where DN = [D0, D1, D2, …, 
DN-1, DN] is the soil boundaries; ξ = [ξ1, ξ2, …, 
ξN-1, ξN] is a set of ln(Ic) data obtained within a 
depth-range of interest and ξn (n = 1, 2, …, N-1, 
N) represent the ln(Ic) values in the n-th soil 
layer; T is an indicator function of engineering 
judgments based on soil behaviour type. To 
explicitly incorporate the spatial variability of Ic 
into CPT based-soil stratification, Cao et al. 
(2019) adopted N independent random fields to 

model the Ic profile as shown in Fig. 1. Herein, 
the statistical characteristics (including mean 
value n, standard deviation n and scale of 
fluctuation n) of Ic in the n-th random field are 
represented by θn (i.e., θn = [n, n, n]). 
Nevertheless, it shall be pointed out that, for the 
purpose of soil stratification that focuses on 
identifying the number and boundaries of soil 
layers, only N and DN are of intrinsic interest. 
The θn are treated as nuisance parameters and 
dealt with through marginalization in this study 
(Wang et al. 2013, Cao et al. 2019). 
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Figure 1. Illustration of Gaussian random field 
model 

Alternatively, using the Bayes’ Theorem, 
p(DN, N |ξ, T) is written as (Cao and Wang 2013; 
Cao et al. 2019): 
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where p(DN, N |ξ, T) is the joint posterior 
distribution of DN and N given T and ξ, which is 
a dynamic dimension varying with N soil layers; 
p(ξ, T|DN, N) is the likelihood function that 
reflects the relationship between model 
parameters and observed data; P(N) and p(DN |N) 
are prior knowledge of soil layer quantity and 
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boundaries in the absence of site information, 
respectively; p(ξ ,T) is a normalizing constant 
and is united in different subspaces. The 
calculation of prior knowledge and likelihood 
function are introduced in the following two 
subsections, respectively. 

2.1 Prior information 
In the case of no prior knowledge on N and 

DN, they can be considered bounded, uniform 
distributions with the range of values chosen to 
represent physically reasonable and set wide 
enough that data predominantly determine 
posterior. In particular, the prior distribution of 
N is given by 

  max

max

1
1,2, ,P N N N

N
         (2) 

where Nmax is the upper bound of the number of 
soil layers, and P(N) is a constant in all of the 
state spaces. The prior distribution of DN can be 
represented by a flat Dirichlet distribution, and 
is expressed as (Cao et al. 2019) 

    1| / N

Np D N N H            (3) 

where Γ(·) is the Gamma function evaluated at 
N, and H is the maximum depth of cone 
penetration test. As indicated by Eq. (3), p(DN |N) 
is a constant for a given N value and testing 
depth H. 

2.2 Likelihood function 
Using the Theorem of Conditional 

Probability (Ang and Tang, 2007), p(ξ, T|DN, N) 
is re-written as: 

     , | , | , , | ,N N Np T D N p T D N p D N    (4) 

where p(T |DN, N, ξ) is the indicator likelihood 
function of engineering judgments based on soil 
behavior type and p(ξ |DN, N) is the likelihood 
function considering statistical characteristic of 
Ic. 

The engineering judgments based on soil 

behaviour type approximately divide soils into 

six zones from 2 to 7 (i.e., Roberson SBT chart). 

Hence, the SBT of soil layer in the 

corresponding depth can be obtained by Ic 

profile on the basis of six soil zones. Then the 

probabilities of the soil layer belonging to each 

SBT, which are named SBT= X (i.e., X varies 

from 2 to 7) probability in this study, can be 

calculated by counting Ic data points in different 

SBT zones. Consider, for example, if a quarter 

of the Ic data points in a soil layer falls into the 

zone where SBT = 5, and the probability of the 

SBT = 5 of the soil layer is 25%. There is no 

asserting that a soil layer belongs to a SBT zone 

with perfect certainty, which causes the presence 

of noisy thin layers, and these thin layers may 

not be reasonable. Then, the existence 

probability of one boundary can be defined by 

the SBT probabilities of two adjacent soil layers 

on both sides of it. Without loss of generality, 

the threshold probability 0.5 is chosen to 

determine whether a boundary exists. Given a 

profile of Ic and a combination of N and DN, the 

existence probability of each boundary can be 

calculated and compared with the threshold 0.5. 

Herein, as long as any one of existence 

probabilities of boundaries is less than 0.5, and 

the combination of soil layer boundaries is 

unreasonable. Using the criterion, the indicator 

likelihood function based on Roberson SBT 

chart can be calculated as: 

  -11     ( ) 0.5 for
| , , =

0                otherwise

n n

N

P SBT SBT n
p T D N 

  



(5) 
where SBTn (n = 1, 2, …, N-1, N) represent the 
soil behaviour type values in the n-th soil layer. 
Further, through the aforementioned N random 
fields model, p(ξ |DN, N) is written as (Cao et al. 
2019): 

   
1

, ,
N

N Nn
n

p D N p D N 


         (6) 

where p(ξn |DN, N) is the likelihood function 
with statistical characteristic of Ic in the n-th soil 
layer. Using the Theorem of Total Probability, 
p(ξn | DN, N) is expressed as 

     , , , ,n n nn n nn n
p D N p D N p D N d    



   

(7) 
where p(ξn |θn, DN, N) is the joint Gaussian PDF 
of ξn, and p(θn |DN, N) is the prior information of 
θn. For the sake of conciseness, detailed 
calculation of the joint Gaussian PDF is not 
provided herein. Interested readers are referred 
to Cao et al. (2019) for details. 

Substituting Eqs. (2) -(7) into Eq. (1) gives 
the p(DN, N |ξ, T) for conducting the 
underground soil stratification. However, due to 
the discontinuity of the likelihood function with 
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respect to DN, constraint relationship among soil 
boundaries (i.e., Dn > Dn-1), and 
high-dimensional integral involved in posterior, 
most of available inference techniques for 
Bayesian updating are computational difficulty. 
The next section introduces a high-efficiency 
Bayesian updating technique named RJMCMC 
(Green 1995) to, simultaneously and efficiently, 
obtain the most probable number of soil layers 
N* and their most probable boundaries D*

N* 
according to p(DN, N |ξ, T). 

3. RJMCMC for Bayesian Updating 
RJMCMC (Green 1995) generalizes the 

Metropolis-Hastings (M-H) algorithm to cases 
where the proposal distribution not only moves 
within the current state (or model) space, but 
also between state spaces, of different dimension 
or type. In the process of undergoing dimension 
changes (i.e., jump), the requirement of detailed 
balance and dimension matching should not be 
violated. The number of soil layer N in Eq. (1) 
can be treated as a variable dimension parameter, 
resulting in the joint posterior distribution p(DN, 
N |ξ, T) that spans multiple subspaces of 
different dimensions. The scheme of three move 
types: Update, Birth and Death, are applied here, 
and the latter two implements dimensional 
change in the RJMCMC algorithm. A key 
advantage of this approach is that the nature of 
RJMCMC renders a well-suited approach to 
choose an optimal candidate model rather than 
comparing model evidence of all the models, so 
it is a fast computing strategy to obtain the most 
probable number N* of soil layers and their most 
probable boundaries D*

N* (Green 1995). 
At each run RJMCMC, an independent 

random choice is made among three move types 
(i.e., Birth move, Death move and Update move) 
that have probabilities bi, di, and ui, respectively, 
depending only on the current number of soil 
layer i, and satisfying bi +di +ui = 1 (i = 2, …, 
Nmax-1). Generally speaking, d1 = 0 and bNmax = 
0 impose the preassigned bound limit on the 
number of soil layer. Apart from these 
constraints, these probabilities are chosen as: 

1

3
i i ib d u                  (8) 

On the other hand, to further reduce 
computing costs and improve the acceptance in 

the Markov Chain, perturbing one boundary in a 
particular state space only changes the adjacent 
two layers and maintain the rest of the boundary 
invariant (Dettmer et al. 2012). Therefore, there 
is no need to compute the likelihood function of 
entire soil layers for each sample. As has been 
noted above, one sweep of RJMCMC algorithm 
for (N, DN) consists of three move types that 
have the equal probability except the special 
situations (i.e., i = 1 and i = Nmax). The details of 
these types are introduced in the following 
subsections.  

3.1 Update move 
The Update move is consistent with ordinary 

Markov Chain Monte Carlo in the fixed 
dimension case. Herein, the M-H algorithm can 
be implemented by calculating the prevailing 
M-H acceptance ratio of Update move for a step 
from the current state (N, DN) to the next state 
(N', D'N')  

    min 1,
iu posterior ratio proposal ratio    

(9) 

where, here and later, posterior ratio = p(N', D'N' 
|ξ, T) /p(DN, N |ξ, T); proposal ratio = Q(DN) 
/Q(D'N') and Q(·) is the proposal function. The 
proposal ratio is united due to the symmetry of 
the proposal function at current state and next 
state in the Update move of RJMCMC 
algorithm. Referring the zone of influence may 
be about 0.2-0.5 m for a CPT (Idriss et al. 2008), 
the proposal function in this study can be 
conservatively defined as:  

 '
1 1

1
'

1
n

n n

Q D
D D 


 

         (10) 

where D'n' is the n-th soil boundary generated 
from the uniform distribution that is limited by 
the interface at 0.5m of adjacent soil layer 
boundaries. In other words, the thickness of each 
soil layer should be more than 0.5m. 

3.2 Birth move and Death move 
In this section, the Birth and Death moves 

are illustrated for the trans-dimensional posterior 
in Eq. (1) while not violating the requirement of 
detailed balance and dimension matching. In the 
process of dimension changes, the proposal 
distribution in Eq. (10) is replaced with a 
two-step procedure (Green 1995). Firstly,  
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1

Q u
H

              (11) 

where u is a uniform distribution from surface 
(i.e., 0) to a maximum depth of interest (i.e., H). 
Then calculate the next state (N', D'N'), using u 
and the current state (N, DN). An one to one 
invertible transformation function, f(·), is chosen 

    '', ' , ,N NN D f N D u        (12) 

Note that the only restriction on the 
transformation function is that it is a 
diffeomorphism (i.e., both f(·) and its inverse are 
differentiable) for calculation of Jacobian 
determinant. To preserve positivity and maintain 
simplicity in the acceptance ratio calculations, u 
and the position of soil boundaries of the current 
state are sorted by ascending for the next state, 
which is [D'0', D'1', D'2', …, D'N', D'N+1'] = [D0, 
D1, D2, …, Dn, u, Dn+1, …, DN-1, DN]. Noted that 
the two vectors on both sides of above equation 
are of size m' and m, respectively, and m' = m 
(i.e., dimension matching). Before calculating 
the acceptance ratio of Birth move, the 
constraint of 0.5m (see 3.1 section) switch 
should be conducted to judge the rationality of 
the new soil boundary. Green (1995) shows that 
a trans-dimensional move of RJMCMC 
algorithm can be implemented similar to the 
M-H algorithm by generalizing the M-H 
acceptance to apply to a step from the current 
state (N, DN) to the next state (N', D'N') as 

1min 1,
( )i

i
b

i

d
posterior ratio J

bQ u
 

  
  

  
  (13) 

where bi, di+1 are the probability of choosing 
Birth move and Death move, respectively. Their 
subscript represents the dimension of state space 
(i.e., the number of soil layer); |J| is the Jacobian 
determinant that accounts for a diffeomorphism 
in multiple subspace of different 
dimensionalities and is united by 
pre-establishing the diffeomorphism for 
computational efficiency. As the inverted 
procedure of Birth move, alternatively, Death 
move randomly picks and deletes a soil 
boundary, reducing the current high dimension 
state by 1. In deriving an expression for the 
acceptance probability of the Death move, it is 
helpful to re-write Eq. (13). Then, the 

acceptance probability for the corresponding 
Death move has the same form with the 
appropriate change of labelling of the variables, 
and the ratio terms inverted as 

1 ( )
min 1,

i

i
d

i

b Q u
posterior ratio

d J
 

  
  

  
  (14) 

The samples of joint posterior of N and DN 
are generated through random walk of Update, 
Birth and Death moves for quantifying 
underground soil stratification. Interested reader 
can obtain the detailed algorithm and 
implementing procedures of RJMCMC 
formulation from Green (1995). 

4. Case studies 
For illustration, the proposed approach is 

applied to conducting underground stratification 
based on four real-world Ic profiles. Table 1 
summarizes the basic information of these Ic 
profiles including one training dataset and three 
testing datasets. The second row in the Table 1 
is their maximum depth (i.e., H). In addition, the 
most probable number of soil layers N* and 
corresponding computational cost are of in two 
last rows of below Table 1. To assure the 
posterior predominantly determined by site 
information, the maximum number of soil layer 
is prescribed as 50 (i.e., Nmax = 50). The 
RJMCMC simulation is run for 200,000 updates 
using a MATLAB R2015b on a desktop 
computer with the Inter Core i7 CPU. All of the 
computational time of four datasets is around 
200 seconds, which indicates that proposed 
computation is independent of the amount of 
data points and has high computational 
efficiency.  

Consider, for example, Fig. 2 only shows the 
frequency for the number of soil layers of the 
training dataset, indicating significant 
probability for soil layers with 17 to 20, and the 
maximum probability 36.62% occurs at 18 soil 
layers. Hence, the most probable number of soil 
layers for the training datasets is eighteen (i.e., 
N* =18). The maximum number of soil layers as 
shown in Fig. 2 is 24, which is much less than 
the prescribed the maximum number of soil 
layer (i.e., Nmax = 50). It clearly demonstrates 
that the range of prior distribution is wide 
enough. The results of the most probable N* for 
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the rest of testing datasets occur at N = 5, 6, 14, 
respectively (see Table 1). 

Table 1. Summary of datasets 

 
Training 

Data 

Testing 

Data (a) 

Testing 

Data (b) 

Testing 

Data (c) 

Interval (m) 0.05 0.05 0.05 0.05 

Depth (m) 40.40 14.90 18.35 28.25 

N* 18 5 6 14 

Time (s)[a]  227 193 216 228 

Note [a]: On the MATLAB R2015b of a desktop computer 

with the Intel Core i7 CPU, and run 200,000 times 
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Figure 2. The frequency of soil stratification models 

at the training dataset (Nmax = 50) 
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Figure 3. Soil identification results of different 

algorithms at the training dataset: (a) this study, (b) 

Ching et al. (2015) and (c) Wang et al. (2013) 

The most probable depth of soil boundaries 
(i.e., D*

N*) for the training dataset using the 
proposed approach is shown in Fig. 3(a). The 
boundaries of different SBTs based on Ic are 
shown by vertical green dashed lines and each 
the most probable soil boundary identified by 
the proposed approach is shown by horizontal 
black solid line. The existence probability of 
each the most probable boundary defined in this 
study is also labelled beside the boundary in Fig. 
3(a). Obviously, all the existence probabilities 
are greater than 0.5, which is affected by 
indicator likelihood function based on Roberson 
SBT chart. It is also noted that the existence 
probability of the first soil boundary is close to 
the prescribed threshold 0.5, reflecting lower 
degrees-of-belief based on Roberson SBT chart.  
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Figure 4. Soil identification results at the testing 

dataset (a), (b) & (c) 

This set of CPT data also has been used to 
illustrate CPT based soil classification and/or 
stratification approaches in literature, including 
Bayesian soil classification and stratification 
(BSCS) approach based on Robertson SBT chart 
(Wang et al. 2013), and the wavelet transform 
modulus maxima (WTMM) method for soil 
stratification (Ching et al. 2015), which are 
shown in Fig. 3(b) and (c). In general, the results 
from the three methods (i.e., the proposed 
approach, WTMM method, BSCS method) are 
generally agreed with each other, except that the 
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proposed method identifies some thin soil 
boundaries which were not identified by 
WTMM and BSCS. This is because that the 
proposed the unique Bayesian framework 
synthetically reflects the engineering judgments 
and statistical characteristics of Ic. In addition, 
the potential thin layers identified by statistical 
characteristics will be filtered out by the defined 
indicator likelihood function based on Roberson 
SBT chart, this will be demonstrated in the next 
section. For the three testing datasets, the 
proposed algorithm is carried out and the results 
of the most probable depth of soil boundaries are 
shown in Fig. 4. Similarly, the boundaries of Ic 
and each the most probable soil boundary are 
shown by vertical green dashed lines and 
horizontal black solid line, respectively. The 
proposed approach rationally identifies the 
location of soil layer boundaries based on the 
profile of Ic. 

5. Discussion 
This section discusses the impact of 

engineering judgments based on Roberson SBT 
chart. The soil stratification results with and 
without engineering judgments are shown in Fig. 
5(a) and (b), respectively. The boundaries 
between different SBTs based on Ic are shown by 
vertical green dashed lines and the most 
probable soil boundaries identified by the 
proposed approach are shown by horizontal 
black solid lines. When only statistical features 
of Ic (i.e., P(DN, N |ξ) = p(ξ |D, N)p(DN|N)P(N)) 
are available, it can be obviously noted that one 
potential issue of stratification results (see Fig 
5(a)) is the possible misconception of the very 
thin soil layers. The cause of that it is 
remarkable sensitive to Ic variation. Especially at 
depths ranging from 5 to 15 m, numerous 
potential thin layers are conducted, which is 
dominated by SBT = 6 soil within this depth 
range. Therefore, a criterion based on Roberson 
SBT chart is proposed to reduce the thin layers 
that exist in the same SBTs zones. The criterion 
is remarkably effective by comparing results 
with engineering judgments and without it.  

6. Conclusion 
In this study, a Bayesian framework is 

developed for soil stratification based on the 
profile of Ic calculated from cone penetration  
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Figure 5. Soil identification results at the training 

dataset: (a) without engineering judgments and (b) 

with engineering judgments 

test measurements. The soil stratification 
information contained in the profile of Ic is 
explicitly extracted by proposed Bayesian 
framework. It is a trade-off between statistical 
differences in Ic values of adjacent soil layers 
and engineering judgments based on Roberson 
SBT chart. The samples of joint posterior 
distribution of N and DN are obtained by running 
RJMCMC. In addition, for the purpose of 
further improve computational saving and 
ensure the acceptance in the Markov Chain, only 
the adjacent two layers are changed and 
maintain the rest of the boundaries invariant. 
Therefore, this study can simultaneously provide 
real-time analysis of boundary and quantity of 
soil layers based on Bayesian inference over a 
depth-range of interest. 

Equations are derived for the proposed 
approach, and are demonstrated and verified by 
four real-world cases and contrasted with two 
other different methods for the training dataset. 
Results illustrate that RJMCMC for Bayesian 
framework rationally identify the most probable 
soil stratigraphy, and to address computational 
difficulty is greatly promising. The discussion of 
engineering judgments shows that it is necessary 
to take the engineering judgments account into 
the soil stratification. 
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