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Abstract: In recent years, sparse modeling has attracted attention as an effective analysis method for ill-posed 
inverse problems, and has achieved successful results in various fields. In general, the cone penetration test 
(CPT) is conducted when geological survey is conducted. Soil behavior test (SBT) and Ic index are widely used 
for stratigraphic profiling based on CPT. However, since SBT and Ic contains lots of noise and it is very difficult 
to interpret the soil stratigraphy, there is a need to use an advanced inverse analysis method such as sparse 
modelling. After introducing basic concept and formulation of sparse modelling, we show practical examples of 
soil stratification using sparse modeling with actual ground data. Fused lasso, which is one of popular 
formulation in sparse modelling, assumes sparsity in first order difference space. We apply this fused lasso to 
stratification problem and have good results. The regularization parameter, which is a key parameter in lasso, is 
determined empirically. It is pointed out that cross-validation which is the most popular way to determine the 
regularization parameter has a problem when correlated noise is contained in the data.  
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1. Introduction 
Stratigraphic profiling is a central task in 
geotechnical site investigation. Some studies 
have demonstrated the importance of soil 
stratification on the design of geotechnical 
structures. In order to quantify the underground 
stratification, the number of layers (e.g., soil 
types) and their thickness (and hence their 
boundaries) should be identified. 

In recent years, stratigraphic profiling based 
on the cone penetration test (CPT) has attracted 
attention because the CPT can provide data (tip 
resistance, sleeve friction, and pore pressure) 
with high spatial resolution within a reasonable 
time. Because no soil samples are extracted, the 
CPT-based stratigraphic profiling is performed 
by means of a soil classification system. Among 
the available systems, the soil behavior type 
(SBT) and the Ic index are widely used. 
Nevertheless, due to the heterogeneity of soils, 
SBT and Ic vary spatially, and the interpretation 
of soil stratigraphy can be very difficult. An 
example of profile of Ic with depth is shown in 
Figure 1 (a). Small- and large-scale fluctuations 
can be seen in the profiles. Figure 1 (b) shows 
the SBT profile based on the direct use of the Ic 
– SBT mapping. The SBT profile with depth 
also shows small-scale fluctuations in the data, 

suggesting the presence of many thin layers, less 
than 10 cm-thick, were identified. This results in 
a typical “unreasonable” soil stratification and 
cannot be used in geotechnical practice. To 
address the difficulty, several methods have 
been developed for CPT-based stratigraphic 
profiling using machine learning techniques 
(Jung et al. 2008; Wang et al. 2013). 

    
(a)                  (b) 

Figure 1. Profiles of Ic and SBT with depth 
 



2019 TC304 Student Contest 
22 Sep 2019, Hannover, Germany 
 

The machine learning method known as 
“sparse modeling” has received much attention 
for its ability of managing several types of 
inverse problems. According to the general 
principle of sparsity, a phenomenon should be 
represented with as few variables as possible. 
This approach, which essentially favors simple 
theories over more complex ones, is central to 
many research fields. One of the most widely 
adopted methodologies for achieving sparse 
modeling is the least absolute shrinkage and 
selection operator (lasso) proposed by Tibshirani 
(1996). In this paper, lasso is referred to as 
sparse modeling. Some researchers have 
demonstrated the effectiveness of sparse 
modeling in solving inverse problems (Lustig et 
al. 2007; Honma et al. 2014).  

Sparse modeling can be applied not only for 
solving ill-posed inverse problems, but also for 
exploiting internal structures in the data, and 
automatic selecting simpler but accurate 
statistical models. Therefore, it is expected that 
sparse modeling would be useful in stratigraphic 
soil stratification.  

This paper demonstrates the potential of 
sparse modeling for solving geotechnical 
engineering problems by showing practical 
examples. The paper is structured as follows: in 
Section 2, the theoretical fundamentals of 
inverse analysis, classification and solution of 
inverse problems are presented; in Section 3, the 
concept of sparse modeling,  its mathematical 
fundamentals and numerical algorithms to solve 
sparse modeling problems are summarized are 
outlined; in Section 4,  Then, describes future 
topics in this study are shown in Section 5 and, 
finally a summary of the results of sparse 
modeling in geotechnical engineering are 
presented in Section 6. 
 

2. Stratigraphic Profiling as Inverse Analysis 
Let us consider the following linear system 
model and the corresponding inverse problem: 

y Ax                  (1) 

where, y is an m-dimensional observation vector, 
x is an n-dimensional (unknown) parameter 
vector, and A is an m×n matrix representing a 
linear operator. We want to estimate the 
unknown vector x using the observation vector y. 

This is a typical example of inverse analysis. In 
stratigraphic profiling, y is the measured depth 
profile of Ic, and x is the exploited structure (a 
trend function) from y. If the A matrix has full 
rank, the inverse problem can be classified into 
three categories depending on the values of m 
and n: 
 
m > n: Over-determined problem 
m = n: Even-determined problem 
m < n: Under-determined problem 
 

If solutions exist, even-determined problems 
have unique solutions, and the error vector  = y 
– x is a zero vector. With more observation data 
than unknown parameters, there is no solution 
that can fit exactly with the observation data. 
However, least square solutions can be defined 
by minimizing the quantity: 

2

2

1
min  

2


x
y Ax             (2) 

These two problems are hardly encountered 
in inverse problems in geotechnics, as 
observation data are usually much less than the 
unknown parameters. Most of the inverse 
problems in practice might be under-determined 
(ill-posed) problems, therefore the study on the 
methods for solving under-determined problems 
is the central topic of inverse analysis. One 
approach to solve under-determined problems is 
to use some kind of regularization. The most 
commonly used method consists of minimizing 
the quantity: 

2 2
min   s.t.  t x y Ax         (3) 

where || . ||2 identifies the 2 norm, and t is a 
user-specified tuning parameter. The above 
optimization problem can also be written in the 
following unconstrained form: 

2 2

1
min  

2
  

x
y Ax x          (4) 

where  is the regularization parameter, which 
controls the intensity of the regularization term 
||x||2 and the least square term ||y – Ax||2. There 
are several advantages of using this objective 
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function: the function is strictly convex, 
therefore it always has a unique solution; 
moreover, the solution to the problem is 
available in close form, which is defined by: 

T 1 Tˆ ( + ) x A A I A y           (5) 

This method is termed “ridge regression” (Hoerl 
and Kennard, 1970), or “weight decay” in the 
context of neural network (e.g., Bishop 2006). In 
the context of Bayesian framework, the 
regularization term can be interpreted as “prior 
information” of the solution, which corresponds 
to saying that the “2 norm of the solution vector 
should be small.” 
 

3. Sparse Modeling 
3.1 Solution Sparsity 
Solution sparsity is a property in which the 
solution vector x has xj = 0 in many components 

{1, , }j n  . In other words, it is assumed that 
only a relatively small subset of x is truly 
important in a specific context: e.g., usually only 
a small number of simultaneous faults occurs in 
a system; a small number of nonzero Fourier 
coefficients is sufficient for an accurate 
representation of various signal types; and a 
small number of predictive variables is most 
relevant to the response variable, and is 
sufficient for learning an accurate predictive 
model. In all these examples, the solution we 
seek can be viewed as a sparse high-dimensional 
vector with only a few nonzero coordinates. 
 
3.2 Best subset selection 
Solution sparsity is a useful prior information to 
solve under-determined problems. The role of 
this property in solving an underdetermined 
problem is shown in Figure 2. In the figure, 
colored cells indicate non-zero components (also 
called active-set), and white cells indicate zero 
components. When the solution x is sparse, and 
if we know how many zeros are and which 
components are nonzero in x, the 
under-determined problem can be solved by 
minimizing the following 

0 2
min   s.t.  t x y Ax        (6) 

where || . ||0 is an 0 norm (this is not a proper 
“norm”, though), and indicates the number of 
non-zero components in x. This procedure is 
called the “best subset selection”. The 
corresponding Lagrangian form of Eq. (6) is 
given by: 

y A x

= ×

m = 3 m×n = 3×9

If the solution has sparsity...

n = 9

y A x

= ×

n-k = 6Under-determined problems
can be solved

k = 3

m = 3 m×n = 3×9

 
Figure 2. The role of solution sparsity in solving an 

under-determined problem. 
 

2 0

1
min  

2
  

x
y Ax x         (7) 

where  is the regularization parameter, and its 
role is the same as that in Eq. (4). By 
minimizing Eq. (7), the sparse solution can be 
obtained. In general, however, finding a 
minimum-cardinality solution satisfying linear 
constraints is an NP-hard combinatorial problem 
(Natarajan, 1995). Thus, an approximation is 
necessary to achieve computational efficiency, 
and it turns out that, under certain conditions, 
approximate approaches can recover the exact 
solution. 

An alternative approach of best subset 
selection is provided by the following equation: 

2 1

1
min  

2
  

x
y Ax x         (8) 

where || . ||1 is an 1 norm, and stands for sum of 
the absolute values of x. A famous schematic of 
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comparison between Eqs. (4) and (8) is shown in 
Figure 3. The constraint region for ridge 
regression is the disk x1

2 + x2
2, while that for 

lasso is the diamond |x1| + |x2|. Both methods 
find the first point where the red line hits the 
constraint region. Unlike the disk, the diamond 
has corners; if the solution occurs at a corner, 
then it has one parameter x1 equal to zero. When 
n > 2, the diamond becomes a rhomboid, and 
has many corners, flat edges, and faces; there are 
many more opportunities for the estimated 
parameters to be zero. This idea can be applied 
in many different statistical models. In statistical 
literature, the problem of Eq. (8) is widely 
known as the least absolute shrinkage selection 
operator (lasso, Tibshirani, 1996). 

2
x

1
x

1 22 10x x (2, 4)
(0,5)

2x

1x

2x

1 22 10x x 

Figure 3. Schematic comparison between ridge and 

lasso. 

 
There have been many works on lasso since 

it was first proposed in 1996, and it has become 
clear that the 1 penalty has the following 
advantages. 

1) The 1 penalty provides a natural way to 
encourage sparsity and simplicity in the 
solution. The lasso enables simultaneous 
model selection and parameter estimations 
and gives interpretable models. 

2) The 1-based penalties are convex. This 
fact and the assumed sparsity can lead to 
significant computational advantages. For 
example, if we have to estimate one 
million non-zero parameters with 100 
observation data, the computation is very 
challenging. However, if we apply the 
lasso, then at most 100 parameters can be 
nonzero in the solution, and this makes the 
computation much easier. 

 
3.3 Structured sparsity 
The basic lasso does not perform well when the 
solution is not sparse. In other words, the basic 

lasso has certain limitations in exploiting 
inherent structures that arise from underlying 
index sets, such as time and space, in the data. 
The unknown target parameters might each have 
an associated time stamp, and we might then ask 
for time-neighboring coefficients to be the same 
or similar. The sparse modeling performs well 
even in the problems by enforcing smoothness 
of neighboring unknown parameters. The 
approach is called “fused lasso” (Tibshirani et al. 
2005), and can exploit such structure within a 
data. The fused lasso is the solution of the 
following optimization problem: 

2 1

1
min  

2
  

x
y Ax Bx          (9) 

where, B is a (n–1) × n matrix, and a commonly 
used form of B is: 

1

1 1 0 0 0

0 1 1 0 0

0 0 0 1 0

0 0 0 1 1

 
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  
  
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


     



     (10) 

This regularization term enforces the sparsity in 
the first-order differences of neighboring 
solutions, and is called “total variation”. The 
total variation in Eq. (9) can be generalized to 
use a higher-order difference leading to the 
problem: 

( 1)

2 1

1
min  

2
k  

x
y Ax D x      (11) 

where D(k+1) is a matrix of dimension (n – k – 1) 
× n that computes discrete differences of order k 
+ 1. This method deals with different kinds of 
structures in the data in natural ways. 

This study applies fused lasso to exploit a 
hidden structure in the depth profile of Ic (Figure 
1a), and it can be done using the fused lasso 
with a TV regularization term. The target 
problem is one-dimensional soil profile and the 
objective function Eq. (9) can be rewritten as the 
following equation for simplicity: 

1
2

1
1 1

1
min  ( ) | |

2

m m

i i i ix
i i

y x x x



 

        (12) 
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where yi is the value of Ic at depth i, xi is the 
value of Ic at depth i (to be estimated), and m is 
the number of data values. Subsequently, the 
soil stratification is identified directly through 
the Ic - SBT mapping based on the filtered 
profile. Eq. (11) is particularly called trend 
filtering (Kim et al. 2009).  
 
3.4 Relaxed lasso 
Although the lasso-based sparse modeling has 
many desirable properties, it is a biased 
estimator, for which the bias does necessarily 
disappear as m  ∞. Moreover, this bias 
becomes evident in stratigraphic soil profiling 
problems. In order to deal with this bias, we 
used a two-stage algorithm called “relaxed lasso 
(Meinshausen 2008)”. For more details on bias 
in lasso and the relaxed lasso, the reader is 
referred to Fan and Li (2001) and Meinshausen 
(2008). 
 
3.5 Bayesian view of lasso 
In a Bayesian statistical framework, the lasso 
estimates can be derived as the Bayes posterior 
mode under Laplacian prior for the xj, as: 

| |
( ) exp

2
j

j

x
p x

 
    

         (13) 

where  = 1/. It is favorable to perform a 
Bayesian analysis for assessing the detailed 
uncertainty in the lasso solution. In this regard, 
Park and Casella (2008) proposed the “Bayesian 
lasso”, which computes the posterior mean and 
median estimates from a Gaussian regression 
model with Laplacian prior, but the estimates are 
not sparse. If one wants to obtain sparse 
solutions from standard Bayesian analysis, prior 
has to be defined so that some mass is at zero, 
such as using the spike-and-slab model (George 
and McCulloch, 1993). However, this method 
leads to non-convex problems that are 
computationally intensive and does not have the 
advantages the basic lasso has. 
 

4. Application Examples 
4.1 Training data 
We analyzed the data using different 
regularization parameters, namely = 1.0, 2.0, 
5.0, and 10.0 to investigate the performance of 
sparse modeling in stratigraphic soil profiling. 
Figures 4 show the filtered Ic profiles with 
different choices of . The larger the 
regularization parameter , the simpler trend is 
identified. We empirically determined the 
reasonable regularization parameters in lasso for 
the test data, which is λ=7, and compared it 

(c) λ=5.0 (d) λ=7.0 (e) λ=10.0 (a) λ=1.0 (b) λ=2.0 

Figure 4. Filtered profile of Ic with depth, obtained using different regularization parameters. 
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with results of past studies. The comparison is 
shown in Figure 5. It matches very well with 
past studies shown in Figure 6(b) and (c). sparse 
modeling seems to yield a reasonable soil 
stratification which can be used in geotechnical 
practice. 
 
4.2 Test data 
We empirically determined the reasonable 
regularization parameters in lasso for the test 
data, which are 7 for (a), 5 for (b), and 7 for 
(c) respectively. Figure 6 shows the estimated 

trend of Ic. In the figure, red line indicates 
estimated trend with the selected , and the gray 
line indicates the original Ic profile. Since the 
noise in test data (a) is very small, there is no big 
difference between estimated and original Ic 
profiles. In test data (b), the noise seems large 
compared with data (a). Sparse modeling 
approach works well and gives reasonable trend. 
The proposed method works well for data (c) 
also and capture the trend of distribution 
generally. However, the proposed method could 
not capture the “spike” around z = 20m. It might 

(a) Test data (a), λ=7.0  (b) Test data (b), λ=5.0 (c) Test data (c),λ=7.0 

Figure 6. Stratified Ic with λ determined empirically for the test data a, b, c. 
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be due to non-stationarity in the noise. It seems 
the noise in upper part is larger than that of 
lower part.  
 
5. Future topics 
In Chap.4, the regularization parameter λ is 
determined empirically for stratification of test 
data. The most popular method to determine the 
regularization parameter λ is cross-validation. 
We also tried K-fold cross validation (CV) with 
one-standard error rule to select the best λ, 
which 0.1 for (a) and 0.2 for (b) respectivery. 
Figures 7 shows the stratified Ic with λ selected 
by CV for test data (a) and (b).  

The stratified result does not change 
significantly after trend filtering. Figure 7(a) 
seems reasonable because there is very small 
noise in the data. However, Figure 7(b) is 
against our intuition. A possible reason is that 
the Ic profile contains not white noise but 
correlated noise. We tried formulation 
considering correlated noise (Yoshida et al. 
2017) and have stratification results shown in 
Figure 8. Stratification for test data (a) is almost 
same because the noise level is very small 
irrespective of correlated or uncorrelated. 
Stratification for test data (b) is improved but 
shows only two layers. It suggests the 
importance of consideration of correlation in the 
noise for stratification problems though we need 
more improvement of the proposed method.  

Non-stationarity is another challenging 
research topic. The characteristics of noise (level 
and correlation) in test data (c) and training data 
change depending on depth. We need special 
procedure to perform stratification of data with 
such non-stationarity.  
 

6. Conclusions 
This study shows a practical example of soil 
stratification using sparse modeling, fused lasso 
for actual ground data. It is confirmed that the 
stratification can be performed flexibly 
according to the characteristics of the obtained 
soil data by a simple procedure. However, 
determination of regularization parameter λ is 
remaining research topics as stated in Chap.5.  
 
 
 

References 
Ching, J., Wang, J.S., Juang, C.H., and Ku, C.S. 

(2015). CPT-based stratigraphic profiling 
using the wavelet transform modulus maxima, 
Canadian Geotechnical Journal, 52(12), 
1993-2007. 

Fang, J. and Li, R. (2001). Variable selection via 
nonconcave penalized likelihood and its oracle 
properties, Journal of American Statistical 
Association, 96, 1348-1360. 

George, E. and McCulloch, R. E. (1993). 
Variable selection via gibbs sampling, The 
Journal of the American Statistical 
Association, 88, 881-889. 

Hoerl, A. E. and Kennard, R. W. (1970). Ridge 
Regression: Biased estimation for 
nonorthogonal problems, Technometrics, 
12(1), 55-67. 

Honma, M., Akiyama, K., Uemura, M. and 
Ikeda, S. (2014). Super-resolution imaging 
with radio interferometer using sparse 
modeling, Publ. Astron. Soc. Jpn, 66 (5), 
95-1-14. 

Jung, B.-C., Gardoni, P., and Biscontin, G. 
(2008). Probabilistic soil identification based 
on cone penetration tests. Geotechnique, 58(7), 
591-603. 

Kim, S.J., Koh, K., Boyd, S. and Gorinevsky, D. 
(2009). 1 trend filtering, SIAM REVIEW, 
51(2), 339-360. 

Lustig, M., Donoho, D. and Pauly, J.M., (2007). 
Sparse MRI: The application of compressed 
sensing for rapid MR imaging, Magn. Reson. 
Med., 58 (6), 1182-1195. 

Meinshausen, N. (2008). Relaxed lasso, 
Computational Statistics & Data Analysis, 52, 
374-393. 

Natarajan, B. K. (1998). Sparse approximate 
solutions to linear systems, SIAM J. Comput., 
24(2), 227-234. 

Park, T. and Casella, G. (2008). The Bayesian 
lasso, Journal of the American Statistical 
Association, 103, 482, 681-686. 

Tibshirani, R. (1996). Regression shrinkage and 
selection via the lasso, J. Royal. Statist. Soc. 
B., 58 (1), 267-288. 

Tibshirani, R., Saunders, M., Rosset, S., Zhu, J. 
and Knit, K. (2005). Sparsity and smoothness 
via the fused lasso, J. R. Statist. Soc. B, 67(1), 
91-108. 

 



2019 TC304 Student Contest 
22 Sep 2019, Hannover, Germany 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a)                 (b) 
 
Figure 7. Stratified Ic with λ selected by CV for test 

data (a) and (b). 
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Figure 8. Stratified Ic considering correlated noise for 
test data (a) and (b). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


