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Foreword

Uncertainty is a fact of life in geotechnical and geoenvironmental engineering practice. Nature
in its complexity offers soil profiles often very different from those assumed in analysis and
design; loads and environmental conditions likewise defy accurate prediction; and limited sampling,
measurement errors and shortcomings of analysis procedures further complicate the engineer’s task.
Probabilistic methods, complementing conventional analyses, provide the means for quantifying
and communicating degrees of uncertainty, evaluating dataacquisition strategies, and assessing
hazard mitigation measures. The methods range from probabilistic site characterization, which
involves quantifying the variability and heterogeneity ofstratigraphy and material properties, to
risk-based decision analysis, which provides a framework for identifying the kinds and degrees
of risk involved in a project, and the consequences should “failure” occur, and evaluating the
effectiveness of alternative actions (in site exploration, design, construction, or monitoring) aimed
at controlling or reducing risks.

These lecture notes for the Workshop on Probabilistic Methods in Geotechnical Engineering present
basic concepts of probabilistic modeling, along with many examples of how they can be used to
deal with uncertainties inherent in site characterizationand geotechnical performance prediction,
safety assessment and monitoring. The notes progress through increasingly complex methodology,
starting with the basics of event and fault trees, through single and multiple random variables, to
fundamentals of random fields and geostatistics. Among the applications considered: rock slope
maintenance, clay barrier containment, proof testing of piles, and predicting differential settlement.
Appended to the notes are some excerpts, rich with references, from the 1995 National Research
Council Report on Probabilistic Methods in Geotechnical Engineering.

The workshop notes were prepared by the individual lecturers, Professors T.H. Wu, Robert Gilbert,
Wilson Tang and Gordon Fenton, all members of the ASCE-GT Safety and Reliability Committee.
Although efforts were made to obtain coherence and continuity of coverage, it is expected that
the notes will benefit from further editing based on the experience gained at the workshop and
attendees’ and readers’ comments, and can subsequently serve as the basis for similar committee-
sponsored educational and professional activities. Many thanks, on behalf of the Committee, to
the contributors and to the workshop participants.

Erik H. Vanmarcke
Chair, Safety and Reliability Committee,
Geotechnical Engineering Division, ASCE

Logan, Utah
July, 1997
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Chapter 1

Events, Event and Fault Trees, Bayes’ Theorem

by Tien H. Wu

1.1 Definitions

Events and Probabilities

Events are outcomes, or combinations of outcomes, arising from an ‘experiment’. ‘Experiment’ is
used here in a general sense; an example is whether a slope fails or not. One possible outcome of
this experiment, or event, is failure of the slope. A random event is one whose occurrence is not
known with certainty but can only be associated with a probability that the event will occur. An
example is the probability that the slope will fail. Events are generally denoted using capital letters,
for example failure will be denotedF and non-failure by its complement̄F . The probability that
an eventF will occur is denoted by P[F ].

Example 1: Failure of a rock slope

Consider several maintenance activities,Mi, for a rock slope. Example events are that a maintenance
activity is effective,E, or ineffective,Ē. In either case,E or Ē, there is a probability that the
slope will fail, which is also an event, denoted byF . The consequence of failure,Ck is another
example of an event. Some possible consequences are damage or remediation costs (C1 in dollars),
service disruption (C2 in days), etc. Each consequence is a random event with an associated
probability. For example the probabilities thatC2 = 3 days or thatC1 > $100,000 are written
P[C2 = 3] and P

�
C1 > $100,000

�
, respectively. Probabilities are numbers between 0 and 1 with

larger likelihoods of occurrence being closer to 1.

Combination of events

The conditional event,A jB, is the event thatA occurs given that eventB has occurred. As an
example, the event of slope failure,F , given a maintenance activity is effective,E, is writtenF jE.
Intuitively, we should be better able to estimate the probability of eventF , if we are given some
condition, such as that the maintenance activity is effective. The intersection of events, written
A \ B, means that bothA andB occur, while the union of events, writtenA [ B, means that
eitherA orB or both occur. An example of intersection, also called jointoccurrence, is that a slope
fails and the costC2 = 3 days. An example of union is the costC1 = $5000, orC2 = 3 days, or
both.

Event Tree

An event tree is a graphical description of all possible subsequent events following an initial event.
Fig. 1.1 shows an event tree for rock slope failure. Each branch of the tree is associated with
an event. Maintenance activity 1 is the initial event; it is either effective (E) or ineffective (Ē).
An effective maintenance activity is expected to reduce theprobability of failure of the slope but

4
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cannot eliminate entirely the possibility of failure. Thus, the branch representing the event that the
maintenance activity was effective,E, has two sub-branches representing failure (F ) or non-failure
(F̄ ) with associated probabilities. The failure event,F , has a set of possible consequences,Cj,
each with an associated probability. The tree can be used to assess either the overall probability of
failure or the probabilities of the consequence, which is often expressed as a dollar cost.

Note that each event, or branch in the event tree, is conditional on the sequence of events leading up
to that branch. Fig. 1.1 shows the conditions leading up to a branch of the tree. The probabilities
are therefore conditional probabilities. The eventE arising from maintenance activityM1 can be
explicitly written asE jM1 . Similarly, the probability of the consequence,C1, shown in the upper
right branch, is P

�
C1 > c jM1 \ E \ F

�
which is the probability that the costC1 is greater than

some specified amountc given that maintenance activityM1 was employed, that it was effective,
but that failure occurred.

Each branch of the tree can lead to any number of possible subsequent events; Fig. 1.1 shows
only a small subset of events leading from mitigation measureM1. One advantage of the event
tree is that it forces the careful identification of all possible events leading to failure and/or
serviceability problems. Once the tree has been constructed, one can proceed to evaluate the
conditional probability of each event (branch).

M

M

0

E,  1-P[ E | M  ]
2

E,   P[ E | M  ]

F,  P[ F | M  ,E]

M 1

1 1

2 2

C  ,  P[ C  > c | M  ,E,F]

C  ,  P[ C  = n | M  ,E,F ]
1

1

1

1

F,  1-P[ F | M  ,E]

1

1

Figure 1.1 Example event tree

Fault Tree

Where the causes, or events, that could lead to failure are complex, a fault tree may be constructed to
identify and describe the various events and their relationto failure. A fault tree is a decomposition
of the top event, such as failure, into a combination of subevents. A simplified example is given in
Fig. 1.2. The top event, slope failure, could result from a rock fall or a wedge slide; this is shown
by the symbol (+). Assume that a wedge slide could occur only if there is a high pore pressure
along a weak plane. Then both a weak planeandhigh pore pressure must occur and this is shown
by the symbol (�). If high pore pressure would occur when there is heavy rainfall or when the
drains are ineffective, then the subevents are connected bya (+).
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Slope Failure

Rock Fall Wedge Slide

Heavy Rainfall Ineffective Drainage

Weak Plane High Pore Pressure

+

+

Figure 1.2 Example fault tree

1.2 Fundamental Relations

When events are considered in combination, there are some simple formulae that allow us to
compute probabilities;

P[A \ B] = P
�
A jB� � P[B] = P

�
B jA� � P[A] (1.1)

P[A [ B] = P[A] + P[B] � P[A \ B] (1.2)

The probability of an event, P[A], lies between 0 and 1,

0� P[A] � 1 (1.3)

while the probability of a certain event, [Ω], is

P[Ω] = P
�
A [ Ā

�
= 1 (1.4)

If all possible causes,Bi, of an event, which may be slope failure, are identified and the probabilities
of failure given each cause are determined, they can be combined using theTotal Probability
Theoremto give

P[A] = P
�
A jB1

�
P[B1] + P

�
A jB2

�
P[B2] + � � � + P

�
A jBn

�
P[Bn] (1.5)
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which gives the probability of the event in question by usingthe probabilities that each ‘cause’Bi

occurs. The eventsBi are mutually exclusive and collectively exhaustive.

Example 1(continued). The above relations can be used to evaluate probabilities of combination
of events in the event tree shown in Fig. 1.1. If one were interested in the probability of failure
given that the maintenance activityM1 was undertaken, then one could combine the conditional
probability of failure arising from all branches fromM1;

P
�
F jM1

�
= P

�
F jE \ M1

�
P
�
E jM1

�
+ P

�
F j Ē \ M1

�
P
�
Ē jM1

�
= P

�
F jE \ M1

�
P
�
E jM1

�
+ P

�
F j Ē \ M1

� �
1� P

�
E jM1

��
(1.6)

where the branches leading from eventĒ are similar to those leading from eventE. Likewise, the
overall probability of failure for uncertain maintenance activities is obtained by a summation of all
theMi’s;

P[F ] =
nX

i=1

P
�
F jMi

�
P[Mi] (1.7)

Suppose that the following probabilities have been estimated;

- the probability that maintenance activityM1 is effective is P
�
E jM1

�
= 0.7,

- the probability of failure given that maintenance activity M1 was used and is effective is
P
�
F jE \ M1

�
= 0.1,

- the probability of failure given that maintenance activity M1 was used and is not effective is
P
�
F j Ē \ M1

�
= 1.0,

then the probability of failure givenM1 is taken from Eq. (1.6),

P
�
F jM1

�
= (0.1)(0.7) + (1.0)(1� 0.7) = 0.37

Furthermore, if the probability that the costC1 > cgiven failure is P
�
C1 > c jF \ M1

�
= 0.2 while

the probability that the costC1 > c given that the system does not fail is P
�
C1 > c � c j F̄ \ M1

�
=

0.0, for some valuec, then the probability that the costC1 > c given that maintenance activityM1
was employed is

P
�
C1 > c jM1

�
= P

�
C1 > c jF \ M1

�
P
�
F jM1

�
+ P

�
C1 > c j F̄ \ M1

�
P
�
F̄ jM1

�
= (0.2)(0.37) + (0.0)(1� 0.37) = 0.074

1.3 Random Variables

Random variables are variables whose values are not known with certainty. A probability is
associated with the event that a random variable will have a given value. Consider first the case of
a discrete random variable, which takes values from a discrete set of possibilities. For example,
the number of slope failures can be represented by the randomvariableN . The eventN = 3
corresponds to the event that there are 3 slope failures. Theassociated set of probabilities is called
theprobability mass function(pmf), pN(n) = P[N = n], n = 0,1,2, . . .

If the random variable is continuous, probabilities can be derived from a continuous function
called theprobability density function(pdf), denotedfX(x). Unlike themassfunction, thedensity
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function is not in itself a probability – it must be multiplied by a length measure before becoming a
probability, hence the use of the worddensity. Thus, for continuous random variables, probabilities
are associated with intervals. The probability that the continuous random variableX lies between
x andx + dx is fX(x) dx. An example is that the shear strength of a soil lies between 90 and 100
kPa. Note that the probability that a sample has strength exactly 98.00. . . kPa is vanishingly small.
SincefX(x) generally varies withx, the probability thatX lies betweena andb must be obtained
as a sum of probabilities;

P[a < X � b] =
Z b

a

fX(x) dx

In Example 1, the remediation cost,C1, in dollars is treated as a continuous random variable, while
the delay cost,C2, in days is treated as a discrete random variable.

Methods for establishing pmf and pdf from data are describedin Section 2.4.3. When sufficient
data are not available, subjective probability based on judgement may be used. An example is the
probability that a slope will fail in a certain mode. To estimate the annual probability of failure
in mode 1, one might count the annual number failures in mode 1that have occurred over a large
number of similar rock slopes over a year and divide this number by the total number of rock
slopes considered. This would lead to an estimate of the pmfpNF1

(n), whereF1 denotes a mode 1
failure. Unfortunately, this requires records of failureson many similar slopes. Such records are
often not available, as in the present example. Alternatively, if enough information is available on
the properties of the rock mass and the loads acting on it, then the failure probability P[F1] can be
estimated as described in Chapter 2. When the required information is not available, it is necessary
to estimate the probabilities using engineering judgementbased on experience and observation in
the field.

Subjective probability plays an important role in engineering because it provides a rational proce-
dure for incorporating the engineer’s experience and judgement into the design process. It is an
expression of the ‘degree of belief’, or, according to de Fenetti (1970), “... having obtained the
information that some events have occurred, what are we entitled to say about ... events not yet
known.” Formal methods for encoding subjective probability are available (e.g. Hamptonet al.,
1973, Morris, 1974, Spetzler and Stael von Holstein, 1975).

Example 2: Subjective Probability

Subjective probability was used in a project to choose the optimum maintenance activities by
Roberds (1991). The following are examples from Roberds’ paper. Fig. 1.3a shows the pmf,
pNF1

(n jM0) = P
�
NF1

= n jM0

�
, that represents the subjective probability of number of failures in

mode 1 on a specific slope for a given period if no maintenance (M0) were implemented. Mode
1 denotes isolated rock falls. Estimates ofpNFi

(n jM0) were also made for modes 2, 3, etc.,
which are small individual wedge slides, large individual wedge slides, etc. Fig 1.3b shows the
pdf, fE1

(e jM1), which represents the subjective probability density of the effectiveness,E1, of
the maintenance activity,M1, in reducing the number of failures in mode 1.M1 denotes scaling
andE1 is expressed as the reduction, as a fraction, of the number offailures from the case of no
maintenance activity,NF1

jM0. Estimates offEj
(e jM1) for the effectiveness of other maintenance

activities, where areM2 = isolated rock bolts,M3 = rock bolts with mesh and shotcrete, etc.

Fig. 1.3c shows the subjective probabilityfC1
(c jF1 \ M0) of the consequenceC1 given a failure

in mode 1 with no maintenance activity.C1 denotes remediation cost in dollars. Estimates of
fCk

(c jFj \ M0) were also made for other costs,Ck, for exampleC2 = service disruption in days,
C3 = number of injuries, etc.
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 0  1

(b)

E  | M1 1

0.2

0.4

0  1 2-5 6-10 11-20

(a)

P[ N    | M  ]

N   | M

0

0

C   ($1000)

(c)

1 2 5
1

C

Ef   ( e | M  )11

01
f   ( c | F ,M  )1

F

F

1

1

Figure 1.3 Subjective probabilities

1.4 Decisions under Uncertainty

A very important application of probability analysis is to evaluate and compare different design or
maintenance options. Engineering decisions are usually made in the face of some uncertainty, since
future events, such as the magnitude of a potential earthquake or intensity of a future rainstorm,
cannot be predicted with certainty. In Example 1, the numberof failures on the different slopes
and the effectiveness of the different maintenance activities are all uncertain and are described by
probabilities. Consequently, the outcome of any design or maintenance option cannot be predicted
with certainty. Use of probability methods in decision making allows the various uncertainties and
their effects to be accounted for in a systematic manner. Forexample, in Fig. 1.1, the consequences
Ck of any maintenance activityMi are given as probability distributions. The decision on which
maintenance activity to adopt can be based on the most likelyoutcomes, or the expected value of
the consequences that follow from the different maintenance options. Expected value denotes the
mean value of the pdf of the consequence. When the eventsMi denote options in a decision-making
process, the tree is called a decision tree.
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Example 3: Maintenance Strategy for Rock Slopes

Consider now maintenance activities,Mi, for rock slopes withFj , j = 1,2, . . . possible modes of
failure and associated consequencesCk, all of which will be random variables. For each possible
failure mode there may be several possible consequences, asillustrated in Fig. 1.4.

M

M

M

F

F

C

C

  0

  1

  2

  2

  3

1 1

2

3

C  ,  P[ C  > c  | F   ,M  ]

F  , P[ F  | M  ]11

1 1 1

Action

1

Figure 1.4 Event tree for rock slope maintenance activities

For a given maintenance activity, the probabilities associated with the consequence cost (C1) can
be determined by summing, over all failure modes, the cost probability of each mode, weighted by
the probability of occurrence of that mode; using Eq. (1.5),

P
�
C1 > c jMi

�
=
X

j

P
�
C1 > c jFj \ Mi

�
P
�
Fj jMi

�
(1.8)

where it is assumed that a rock slope can fail in only one mode at a time, i.e. modes are disjoint or
mutually exclusive. If a slope can fail in more than one mode at a time then the probabilities of
the different joint occurrences must be assessed. For example, if a slope can fail in modes 1, 2, or
both, then the possible joint occurrences are the combination of events:A1 = F1 \ F̄2 (mode 1
alone),A2 = F̄1 \ F2 (mode 2alone), andA12 = F1 \ F2 (both modes). These constitute distinct
and disjoint events in Eq. (1.8). In this case, if all other modes are disjoint, the cost probability
would be calculated as

P
�
C1 > c jMi

�
= P

�
C1 > c jA1 \ Mi

�
P
�
A1 jMi

�
+ P

�
C1 > c jA2 \ Mi

�
P
�
A2 jMi

�
+ P

�
C1 > c jA12 \ Mi

�
P
�
A12 jMi

�
+
X
j=3

P
�
C1 > c jFj \ Mi

�
P
�
Fj jMi

�
(1.9)

In general, all theconditionsappearing in the sum on the right hand side must be disjoint and
collectively exhaustive, according to the Total Probability Theorem.

Once the probability distribution of the implementation costs of each maintenance activity has
been obtained, the expected cost can be computed (see Section 2.4.3) and compared with expected
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costs of other maintenance activities, including no action,M0. Then decisions can be made after a
comparison of the expected costs.

Problems involving real slopes may be more complicated thanthe simplified examples given above.
A portion of the event tree for the rock slope problem described by Roberds (1991) is shown in
Fig. 1.5. In this case it was necessary to estimate the numberof slope failures and multiply this by
the consequence of one failure. For example, the consequence,C1, or failures in mode 1, given
maintenance activityM1 is

C1 jF1 \ M1 = fNF1
jM1gfC1 jF1 \ M1g (1.10)

The number of failures given maintenance activity 1,NF1
jM1, was obtained by applying the

effectivenessE of M1 toNF1
jM0. The consequence,C1, of M1 for all failure modes is obtained

by summation

C1 jM1 =
X

j

fNFj
jM1gfC1 jFj \ M1g (1.11)

M

M

M

F

F

C

C

  0

  1

  2

  2

  3

1 1

2

3

1

C  ,  P[ C  | F   ,M  ]1

1

1

F1
F  , P[ N   | M  ]

Figure 1.5 Event tree for rock slope maintenance strategies (after Roberds, 1991)

This was done for all consequences and all maintenance activities. Examples of the pmf ofNF1

and the pdf’s ofE andC are shown in Fig. 1.2. Because of the complicated pdf’s, the probability
distributions of consequences were obtained by Monte Carlosimulation. The results are given
in Table 1.1, which gives the implementation costs,Ii, the consequences,Ck jMi, and the total
equivalent costU jMi of each maintenance activityMi. The total equivalent cost is the result
of combining the different types of consequences. The equivalent costs show that maintenance
activityM3, rock bolts with mesh and shotcrete has the lowest expected equivalent cost and should
be chosen. Further considerations on the choice of the maintenance activity are described in the
paper. Roberds also shows that this method can be extended toall the slopes in a given stretch of
roadway.

For more details on the event tree approach to risk assessment and probabilistic design optimiza-
tion, the interested reader should consult Ang and Tang (1984, pp 498-509), Roberds (1991), or
Vanmarcke (1974 and 1989).
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Table 1.1 Implementation costs, consequences, and total equivalentcosts for alternative preven-
tative maintenance activities (from Roberds, 1991)

Costs & Preventative Maintenance Activities

Consq. M0 M1 M2 M3 M4 M5 M6 M7

Ii min 0 1 5 20 100 50 10 10
($1000) mode 0 2 10 50 200 100 25 15

max 0 5 50 100 500 150 50 20

C1 jMi 5% 0 0 0 0 0 0 0 0
($1000) mean 25 14 19 7 5 14 21 12

95% 66 54 64 37 29 54 59 35

C2 jMi 5% 0 0 0 0 0 0 0 0
(days) mean 4.7 2.7 3.7 1.3 0.9 2.0 4.2 2.4

95% 14 10 13 7.9 5.9 8.1 12 7.6

C3 jMi 5% 0 0 0 0 0 0 0 0
(person) mean 2.3 1.1 1.8 0.5 0.4 1.3 2.3 0.6

95% 7.0 4.4 6.1 2.8 2.8 5.3 7.0 2.3

C4 jMi 5% 0 0 0 0 0 0 0 0
($million) mean 2.7 0.9 1.6 0.5 0.3 1.1 2.0 2.0

95% 8.9 4.4 6.1 2.7 2.3 4.8 7.2 6.5

UfMig 5% 0 0 0 0 0.2 0.1 0 0
($million) mean 3.1 1.1 1.9 0.6 0.7 1.4 2.3 2.2

95% 9.9 5.0 7.0 3.2 3.0 5.5 7.9 6.8

Notes: 1) Implementation costs are in terms of triangular pdf (min - most likely or mode - max),
with insignificant correlation.

2) Consequences and total equivalent costs are in terms of 5%- expected value - 95%,
and are correlated (both among consequences and among activities).

1.5 Bayes’ Theorem and Updating

Bayes’ theorem allows the updating of probabilities given additional information or observations.
For example, if the eventZ is observed, then the updated probability that the eventA occurs given
thatZ occurred is

P
�
A jZ� =

P
�
Z jA�P[A]

P[Z]
(1.12)

We often say that P
�
A jZ� is the updated, orposterior, probability of the eventA. The probability

before obtaining dataZ, P[A], is called theprior probability.

Bayes’ Theorem provides a formal approach to the introduction of new information to update
probabilities and combining different types of information, including judgement. In applications,
Eq. (1.12) is usually written as

P′′
�
θ = θj jZ� = K P

�
Z j θ = θi

�
P′ [θ = θi] (1.13)
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for discrete random variables, whereθ is the state of nature, P′[θ = θi] and P′′[θ = θj jZ] are
the prior and posterior probabilities, respectively, P

�
Z j θ = θi

�
is the likelihood of getting the

observation or dataZ given the state of nature isθi, andK is a normalization constant.

For continuous random variables, Eq. (1.12) becomes

f ′′(θ) = k L(θ) f ′(θ) (1.14)

wheref ′(θ) andf ′′(θ) are the prior and posterior probabilities, respectively,L(θ) is the likelihood
function, andk is a normalization constant. The uncertain state of natureθ is represented by a
parameter of the pmf or pdf that describes the random variable under consideration.

Example 4:

Returning to the number of slope failures in Example 2, assume that the subjective probability of
number of failures,pN(n), in Fig. 1.3a, which is also the prior probability, can be represented by a
Poisson distribution (see Section 2.4.2, Table 2.5) with a mean rate of occurrence ofν = 1/year and
a variance of 1. Here,ν is the parameterθ in Eq. (1.14) that represents the uncertain state of nature.
Now consider the case in which observations were made for a year and 1 failure occurred. This data
point is insufficient for deriving the distributionpN(n). Nevertheless, it is a valuable addition to the
subjective probability and is used to obtain a posterior probability. Calculations can be simplified
if L(ν) andf ′(ν) have certain forms that allow close-form solutions to be obtained forf ′′(ν) (Ang
and Tang, 1975, pp 351–354). Using the method of conjugate distributions,ν is assumed to have
a Gamma distribution with prior parametersr′ = 1 andk′ = 1. Following the examples in Ang and
Tang, we obtainr′′ = 2 andk′′ = 2. This gives a mean value ofν ′′ = 1/year and Var[ν] = 0.5.
Note that the posterior mean rate remains the same because the observations gave the same rate.
However, the posterior variance ofν is 0.5 which reflects a reduction in uncertainty due to the
observation. The posterior distributionf ′′(ν) can be used to derive a posterior distributionp′′N(n)
(see Benjamin and Cornell, 1970, pp 632–635), which can be used to revise the implementation
costs of the maintenance activities. For other examples of probabilistic updating, see Tang, 1971,
and Wuet al., 1987.



Chapter 2

Basic Random Variables

by Robert B. Gilbert

2.1 Introduction

In the last chapter, you learned how to work with events and their associated probabilities of
occurrence. In this chapter, we will introduce a tool that isuseful for evaluating the probability of
an event: the random variable. First, we will provide graphical and numerical methods to represent,
understand and quantify variability. Next, we will presentthe random variable as a theoretical tool
for modeling variability. Finally, we will demonstrate howrandom variable models can be used in
design by introducing the reliability-based design approach.

2.2 Graphical Analysis of Variability

Variability often leads to uncertainty. We do not know what the unit weight of a soil is at a particular
location unless we have measured it at that location. This uncertainty arises because the unit weight
varies from point to point in the soil. For example, unit weight measurements from a boring are
presented in Table 2.1. This boring was drilled offshore in the Gulf of Mexico at the location of
an oil production platform. The soil consists of a normally consolidated clay over the length of the
boring. The unit weight varies with depth, and ranges from 95to 125 pcf.

In this section, we will present five graphical methods for analyzing variability: histograms,
frequency plots, frequency density plots, cumulative frequency plots and scatter plots.

2.2.1 Histograms

A histogram is obtained by dividing the data range into bins,and then counting the number of
values in each bin. The unit weight data are divided into 4-pcf wide intervals from 90 to 130 pcf
in Table 2.2. For example, there are zero values between 90 and 94 pcf (Table 2.1), two values
between 94 and 98 pcf, etc. A bar-chart plot of the number of occurrences in each interval is called
ahistogram. The histogram for unit weight is shown on Fig. 2.1.

The histogram conveys important information about variability in the data set. It shows the range
of the data, the most frequently occurring values, and the amount of scatter about the middle values
in the set.

There are several issues to consider in determining the number of intervals for a histogram. First,
the number of intervals should depend on the number of data points. As the number of data points
increases, the number of intervals should also increase. Second, the number of intervals can affect

14
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Table 2.1 Total Unit Weight Data from Offshore Boring
Sorted Values

Total Unit (x − µ̂X)2 (x − µ̂X)3 Total Unit
Number Depth (ft) Weight,x (pcf) (pcf)2 (pcf)3 Depth (ft) Weight (pcf)

1 0.5 105 7.2 -19.4 172.0 95
2 1.0 119 128.0 1447.7 7.5 96
3 1.5 117 86.7 807.6 5.0 99
4 5.0 99 75.5 -655.7 22.0 99
5 6.5 101 44.7 -299.1 45.0 99
6 7.5 96 136.6 -1596.5 102.0 99
7 16.5 114 39.8 251.5 19.0 100
8 19.0 100 59.1 -454.3 27.5 100
9 22.0 99 75.5 -655.7 37.5 100

10 25.0 102 32.3 -184.0 50.0 100
11 27.5 100 59.1 -454.3 81.5 100
12 31.0 101 44.7 -299.1 121.5 100
13 34.5 101 44.7 -299.1 6.5 101
14 37.5 100 59.1 -454.3 31.0 101
15 40.0 101 44.7 -299.1 34.5 101
16 45.0 99 75.5 -655.7 40.0 101
17 50.0 100 59.1 -454.3 62.0 101
18 60.5 103 22.0 -103.0 122.0 101
19 62.0 101 44.7 -299.1 132.0 101
20 71.5 106 2.8 -4.8 25.0 102
21 72.0 109 1.7 2.3 91.5 102
22 81.5 100 59.1 -454.3 112.0 102
23 82.0 104 13.6 -50.1 152.5 102
24 91.5 102 32.3 -184.0 60.5 103
25 101.5 106 2.8 -4.8 82.0 104
26 102.0 99 75.5 -655.7 142.5 104
27 112.0 102 32.3 -184.0 322.0 104
28 121.5 100 59.1 -454.3 0.5 105
29 122.0 101 44.7 -299.1 162.0 105
30 132.0 101 44.7 -299.1 71.5 106
31 142.5 104 13.6 -50.1 101.5 106
32 152.5 102 32.3 -184.0 272.0 106
33 162.0 105 7.2 -19.4 201.5 107
34 172.0 95 161.0 -2042.3 281.5 108
35 191.5 116 69.1 574.4 72.0 109
36 201.5 107 0.5 -0.3 251.5 109
37 211.5 112 18.6 80.2 271.5 109
38 241.5 114 39.8 251.5 261.8 110
39 251.5 109 1.7 2.3 292.0 111
40 261.8 110 5.3 12.4 211.5 112
41 271.5 109 1.7 2.3 311.5 112
42 272.0 106 2.8 -4.8 341.5 112
43 281.5 108 0.1 0.0 411.5 112
44 292.0 111 11.0 36.3 432.0 112
45 301.5 125 299.7 5188.9 331.5 113
46 311.5 112 18.6 80.2 342.0 113
47 322.0 104 13.6 -50.1 16.5 114
48 331.5 113 28.2 149.9 241.5 114
49 341.5 112 18.6 80.2 371.5 114
50 342.0 113 28.2 149.9 391.5 114
51 352.0 116 69.1 574.4 402.0 114
52 361.5 124 266.1 4340.7 381.5 115
53 362.0 117 86.7 807.6 392.0 115
54 371.5 114 39.8 251.5 412.0 115
55 381.5 115 53.5 391.0 421.5 115
56 391.5 114 39.8 251.5 442.0 115
57 392.0 115 53.5 391.0 191.5 116
58 402.0 114 39.8 251.5 352.0 116
59 411.5 112 18.6 80.2 1.5 117
60 412.0 115 53.5 391.0 362.0 117
61 421.5 115 53.5 391.0 1.0 119
62 432.0 112 18.6 80.2 451.5 119
63 442.0 115 53.5 391.0 361.5 124
64 451.5 119 128.0 1447.7 301.5 125

∑

6892 3254 7034



Probabilistic Methods in Geotechnical Engineering 16

how the data are perceived. If too few or too many intervals are used, then the distribution of scatter
in the data will not be clear. Unfortunately, there are no setrules for determining the appropriate
number of intervals to use. Experimentation with differentintervals is one approach. In addition,
the following equation provides an empirical guide

k = 1 + 3.3 log10(n)

wherek is the number of intervals andn is the number of data points. As an example,k is equal
to 7 for the unit weight data set withn equal to 64.

Table 2.2 Frequency Plot Data for Total Unit Weight
Interval Frequency of Frequency Cumulative

Lower Upper Number of Occurrences Density Frequency
Bound Bound Occurrences (%) (%/pcf) (%)

(1) (2) (3) (4) (5) (6)

90 94 0 0 0.00 0
94 98 2 3 0.78 3
98 102 21 33 8.20 36

102 106 9 14 3.52 50
106 110 6 9 2.34 59
110 114 13 20 5.08 80
114 118 9 14 3.52 94
118 122 2 3 0.78 97
122 126 2 3 0.78 100
126 130 0 0 0.00 100

∑

64 100 25

Column 4 = Column 3/(
∑

Column 3)
Column 5 = Column 4/(Column 2 − Column 1)
Column 6 = Running Total of Column 4
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Figure 2.1 Histogram of total unit weight
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2.2.2 Frequency Plot

The frequency of occurrence in each histogram interval is obtained by dividing the number of
occurrences by the total number of data points. A bar-chart plot of the frequency of occurrence
in each interval is called afrequency plot. The interval frequencies for the unit weight data are
calculated in Table 2.2, and the resulting frequency plot isshown on Fig. 2.2.
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Figure 2.2 Frequency plot of total unit weight

Note that the histogram and frequency plot have the same shape and convey the same information.
The frequency plot is simply a normalized version of the histogram. Because it is normalized, the
frequency plot is useful in comparing different data sets.

Example frequency plots are shown on Figs. 2.2 through 2.5. Fig. 2.2 shows the unit weight data,
which vary spatially.

Fig. 2.3 shows an example of data that vary with time. The dataare monthly average pumping rate
measurements versus time for the leak detection system in a hazardous waste landfill. The data
vary from month to month due to varying rates of leachate generation and waste placement.
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Figure 2.3 Frequency plot of monthly average flow rate for leak detection system
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Fig. 2.4 shows an example of data that vary between construction projects. The data are the ratios
of actual to estimated cost for the remediation of Superfund(environmentally contaminated) sites.
The data vary between sites due to variations in site conditions, weather, contractors, technology
and regulatory constraints. Note that the majority of projects have cost ratios greater than 1.0.
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Figure 2.4 Frequency plot of cost-growth factor

Fig. 2.5 shows an example of data that vary between geotechnical testing laboratories. The data
are the measured friction angles for specimens of loose Ottawa sand. Although Ottawa sand is a
uniform material and there were only minor variations in thespecimen densities, there is significant
variability in the test results. Most of this variability isattributed to differences in test equipment
and procedures between the various laboratories.
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Figure 2.5 Frequency plot of friction angle
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2.2.3 Frequency Density Plot

Another plot related to the histogram is the frequency density plot. The frequency density is
obtained by dividing the interval frequencies by the interval widths. A bar-chart plot of the
frequency density is called thefrequency density plot. The objective in dividing the frequency by
the interval width is to normalize the histogram further: the area below the frequency density plot
(obtained by multiplying the bar heights by their widths) isequal to 100%. This normalization will
be useful in fitting theoretical random variable models to the data, which will be discussed later in
this chapter.

The frequency densities for the unit weight data are calculated in Table 2.2. Note that the units for
the frequency density are % per the units for the data, which are % per pcf in the case of the unit
weight data. The resulting frequency density plot is shown on Fig. 2.6.
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Figure 2.6 Frequency density plot of total unit weight

2.2.4 Cumulative Frequency Plot

The cumulative frequency plot is the final graphical tool that we will present for variability analysis.
Cumulative frequency is the frequency of data points that have values less than or equal to the upper
bound of an interval in the frequency plot. The cumulative frequency is obtained by summing up (or
accumulating) the interval frequencies for all intervals below the upper bound. A plot of cumulative
frequency versus the upper bound is called thecumulative frequency plot.

The cumulative frequencies for the unit weight data are calculated in Table 2.2. For example, the
cumulative frequency for an upper bound of 102 pcf is equal to0% + 3% + 33% = 36%. The
resulting cumulative frequency plot is shown on Fig. 2.7.

A percentile value for the data set corresponds to the corresponding value with that cumulative
frequency. For example, the 50th percentile value for the unit weight data set is 106 pcf (50 percent
of the values are less than or equal to 106 pcf), while the 90thpercentile value is equal to 117 pcf
(Fig. 2.7).
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Figure 2.7 Cumulative frequency plot of total unit weight

2.2.5 Data Transformations

In some cases, it is useful to transform the data before plotting it. One example is a data set of
measured hydraulic conductivity values for a compacted clay liner. The frequency plot for these
data is shown on Fig. 2.8. It does not convey much about the data set because the hydraulic
conductivity values range over several orders of magnitude. A more useful representation of the
data is to develop a frequency plot for the logarithm of hydraulic conductivity, as shown on Fig. 2.9.
Now it can be seen that the most likely interval is between 10−8.4 and 10−8.2 cm/s, and that most of
the data are less than or equal to 10−7 cm/s.
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Figure 2.8 Frequency plot of hydraulic conductivity

A second example of data for which a transformation is usefulare undrained shear strength data for
a normally consolidated clay. A frequency plot of these datafrom an offshore boring in the Gulf of
Mexico are shown in Fig. 2.10. The data exhibit substantial variability with depth, ranging from
500 to 5,000 psf. However, this frequency plot is misleadingbecause much of the variability can be
attributed to the shear strength increasing with depth. In order to demonstrate this trend, ascatter
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Figure 2.9 Frequency plot of log-hydraulic conductivity

plot of the undrained shear strength versus depth is shown on Fig.2.11. A more useful measure of
undrained strength is to normalize it by depth, as shown in Fig. 2.12. This scatter plot shows that
the trend with depth has now been removed from the data, and the variability in the shear strength
to depth ratio is much smaller than that in the undrained shear strength alone. A frequency plot of
the shear strength to depth ratio is shown on Fig. 2.13.
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Figure 2.10 Frequency plot of undrained shear strength

2.3 Quantitative Analysis of Variability

In addition to graphical analyses, the variability in a dataset can also be analyzed quantitatively.
The statistics of a data set (also known as the sample statistics where the data set is the sample)
provide quantitative measures of variability. Features ofinterest include the central tendency of the
data, dispersion or scatter in the data, skewness in the data, and correlation or dependence between
data points. Common statistical quantities are presented in this section.
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Figure 2.11 Scatter plot of undrained shear strength
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Figure 2.12 Scatter plot of shear strength to depth ratio

2.3.1 Central Tendency

The most common measure for the center of a data set is the average value, which is also called the
sample mean. Thesample meanis obtained as follows

µ̂X =
1
n

nX
i=1

xi

whereµ̂X is the sample mean,xi is each data value, andn is the total number of data points. For
example, the sample mean of the unit weight data set in Table 2.1 is given by 6,892/64 = 108 pcf.

The sample median and mode are other measures of central tendency for a data set. Thesample
medianis the 50th percentile value, while thesample modeis the most likely value. For example,
the sample median for the unit weight data set equals 106 pcf (Fig. 2.7), while the sample mode
equals 100 pcf (Fig. 2.2). The sample mode depends on the interval width used in the frequency
plot, and a data set may have more than one mode.
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Figure 2.13 Frequency plot of shear strength to depth ratio

Sample means, medians and modes for the data sets described previously are summarized in Table
2.3. Note that the mean, median and mode are not equal unless the data distribution (the frequency
plot) is symmetrical and has a single mode (peak).

Table 2.3 Summary Statistics for Different Data Sets
Sample Sample

Sample Sample Sample Standard Sample Skewness

Data Set Figure Mean Median Mode Deviation COV Coefficient

Unit Weight Fig 2.2 108 pcf 106 pcf 100 pcf 7.19 pcf 0.067 0.31

LDS Flow Fig 2.3 77.8 gal/d 67.0 gal/d 37.5 gal/d 43.1 gal/d 0.55 0.63

Cost Ratio Fig 2.4 2.22 1.74 1.5 1.93 0.87 2.1

Test Error Fig 2.5 29◦ 29◦ 28◦ 16◦ 0.55 -0.01

K, cm/s Fig 2.8 8.78×10−8 1×10−8 1.25×10−7 4.08×10−7 4.7 7.1

log(K) Fig 2.9 -7.81 -8.00 -8.30 0.613 0.078 1.4

USS Fig 2.10 2070 psf 2000 psf 1250 psf 1100 psf 0.53 0.81

USS/Depth Fig 2.13 8.63 psf/ft 8.90 psf/ft 9.00 psf/ft 2.11 psf/ft 0.24 -0.4

2.3.2 Dispersion or Scatter

The amount of scatter in a data set is most easily measured by the sample range. Thesample range
is simply the maximum value in the data set minus the minimum value. For the unit weight data
set, the range is 125� 95 = 30 pcf (Table 2.1).

The sample variance is a measure of dispersion about the meanvalue of the data set. Thesample
varianceis obtained as follows

σ̂2
X =

1
n� 1

nX
i=1

(xi � µ̂X)2
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whereσ̂2
X is the sample variance. The sample variance is the average ofthe square of the distance

between individual data points and the sample mean. Its value will always be greater than or equal
to zero. For the unit weight data set, the sample variance is given by 3,254/(64� 1) = 51.7 pcf2

(Table 2.1).

The sample standard deviation, σ̂X , is the square root of the sample variance, while thesample
coefficient of variation(c.o.v.),δ̂X , is the standard deviation divided by the mean value

δ̂X =
σ̂Xjµ̂X j

Since the standard deviation has the same units as the mean value, the c.o.v. is a dimensionless
measure of dispersion. The sample standard deviation and c.o.v. for the unit weight data set are
equal to 7.19 pcf and 7.19/108 = 0.067, respectively.

Statistical measures of dispersion for the various data sets are summarized in Table 2.3. Note the
large range of c.o.v. values, with a minimum of 0.067 and a maximum of 4.7. Also, note how
accounting for the trend in undrained shear strength with depth (Fig. 2.11) reduces the sample
c.o.v. from 0.53 to 0.24.

2.3.3 Skewness

Since the sample variance is the average of the square distance from the sample mean, data values
the same distance above and below the sample mean contributeequally. Therefore, the sample
variance provides no indication of how symmetrically the data are dispersed about the mean. The
sample skewness, which is essentially the average of the cubed distance from the sample mean,
provides a measure of symmetry for a data set. Thesample skewness coefficient, a dimensionless
measure of skewness, is given by the following

ψ̂ =

�
n

(n� 1)(n � 2)

� Pn

i=1(xi � µ̂x)
3

σ̂3
x

where ψ̂ is the sample skewness coefficient. A skewness coefficient ofzero means that the
data values are distributed symmetrically about the mean value. A positive skewness coefficient
indicates that the data are skewed about the mean to the right(toward larger values), while a
negative skewness coefficient indicates that the data are skewed to the left (toward smaller values).

The sample skewness coefficient for the unit weight data is equal to
�

64
(63)(62)

� �
7,034
7.193

�
= 0.31 (Table

2.1), indicating that the data are skewed toward larger values (Fig. 2.2).

Skewness coefficients for the other data sets are summarizedin Table 2.3. Most of the data are
positively skewed. Note how taking the logarithm of hydraulic conductivity reduces the skewness
coefficient from 7.1 to 1.4 (Table 2.3).
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2.3.4 Correlation or Dependence

Two variables may be related to one another, as indicated by ascatter plot, such as that shown
on Fig. 2.11. The sample correlation coefficient is a measureof the degree of linear dependence
between two variables. Thesample correlation coefficient, ρ̂ is given by the following

ρ̂XY =

Pn
i=1 [(xi � µ̂X)(yi � µ̂Y )]qPn

i=1(xi � µ̂X)2
Pn

j=1(yj � µ̂Y )2

wherexi andyi are paired observations of the two variables. The sample correlation coefficient
ranges between -1.0 and 1.0, that is�1.0 � ρ̂ � 1.0. A value of zero for ˆρ indicates no linear
dependence between the two variables. A negative value of ˆρ indicates that one variable tends to
decrease as the other increases, while a positive value indicates that one variable tends to increase as
the other increases. The closer the absolute value of ˆρ is to 1.0, the stronger the linear relationship
between the two variables.

For example, the sample correlation coefficient between undrained shear strength and depth is
calculated in Table 2.4. The sample correlation coefficientis equal to

ρ̂ =
3.64�106p

(.473�106)(38.8�106)
= 0.85

This positive value near one indicates that the undrained shear strength tends to increase linearly
with increasing depth (Fig. 2.11).

2.4 Theoretical Random Variable Models

A random variable is a mathematical model to represent a quantity that varies. Specifically,
a random variable model describes the possible values that the quantity can take on and the
respective probabilities for each of these values. Since the frequency plot for a data set indicates
the probability of different values occurring (e.g., Fig. 2.2), a random variable model is just a
mathematical representation of the information containedin a frequency plot.

Why is a theoretical random variable model needed to describe a data set? First, a data set is
limited in size. For example, if another sample of 64 unit weight measurements were obtained,
we would get a different frequency plot than that shown on Fig. 2.2 and different sample statistics
than those summarized in Table 2.3. We would need to measure the unit weight at every point in
the soil in order to obtain the "true" frequencies and statistics. A random variable is a theoretical
model of these "true" frequencies and statistics. Second, in most engineering problems we are
interested in combinations of variable quantities. For example, a pile foundation will undergo
large displacements if the applied load exceeds the pile capacity. We need to consider variability
both in the load and the capacity to design this foundation. Random variable models provide a
mathematical framework for working with and combining multiple quantities that vary.

After a brief section on terminology, discrete and continuous models for random variables will be
discussed in the following sections.
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Table 2.4 Correlation Between Undrained Strength and Depth
x y

Depth USS (x − µ̂X)2 (y − µ̂Y )2 (x − µ̂X)(y − µ̂Y )
(ft) (psf) (ft2) (psf2) (ft-psf)

60.5 670 35519 1954912 263506
72.0 600 31316 2155558 259815
82.0 730 27877 1790731 223428
91.5 1180 24795 788867 139856

101.5 1110 21746 918112 141297
112.0 1080 18759 976503 135345
122.0 1340 16120 530249 92453
132.0 980 13680 1184140 127278
142.5 1130 11335 880185 99882
152.5 1390 9305 459931 65420
162.0 1240 7563 685885 72022
172.0 1690 5923 143021 29106
191.5 1000 3302 1141012 61382
201.5 2340 2253 73885 12901
211.5 2120 1404 2685 -1941
241.5 2260 56 36794 -1432
251.5 2180 6 12503 284
261.8 2130 165 3821 794
271.5 2540 508 222612 10633
281.5 1320 1059 559776 24343
301.5 2310 2760 58476 12704
311.5 2000 3911 4649 -4264
331.5 3200 6812 1281012 93416
341.5 1430 8563 407276 59055
352.0 3010 10616 887021 97042
361.5 2290 12664 49203 24963
381.5 4080 17566 4047412 266639
391.5 2670 20317 362185 85781
402.0 4150 23420 4333967 318594
411.5 1900 26418 28285 27336
421.5 3290 29769 1492840 210808
442.0 4520 37263 6011412 473290
451.5 4370 41021 5298367 466202

∑

8216.0 68250 473789 38783291 3640666

ave 249.0 2068

2.4.1 Terminology

Random variables are generally denoted by capital letters,such asX representing unit weight. If
a random variable takes on a specific value, say if it is measured, then it is no longer random and it
will be designated with a lowercase letter. Therefore,x represents an observation orrealizationof
X.

The range of possible values thatX can take on constitutes thesample spacefor X. For example,
the unit weight for a soil could be any value greater than zero. By definition, the probability of
the sample space, e.g., P

�
X > 0 pcf

�
, is equal to 1.0. The event thatX takes on specific values

is a subset of this sample space. An example is the event that the unit weight is less than 100
pcf, which has a corresponding probability, P

�
X < 100 pcf

�
. The probability distributionfor

a random variable is a function describing the probability that it takes on different values, e.g.,
P[X = x].
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2.4.2 Discrete Random Variables

Discrete random variables can only take on discrete values within the sample space. For example,
consider the number of projects awarded to a consulting firm in the next month,X. If the firm has
submitted five proposals, thenX could be any of the following possible values: 0, 1, 2, 3, 4, 5.

The probability mass function(PMF) for a discrete random variable describes its probability
distribution. An example probability mass function is shown on Fig. 2.14. This PMF indicates
that the probability of 0 successful proposals is given by P[X = 0] = 0.116, the probability of 1
successful proposal is given by P[X = 1] = 0.312, etc. Note that the individual probabilities forX
between 0 and 5 sum to 1.0 since this range constitutes all possible values forX. The probability
thatX is between two values can also be obtained from the PMF. For example, the probability that
X is greater than 1, P[X > 1], is equal to 0.336 + 0.181 + 0.049 + 0.005 = 0.571. The PMF forX
is denoted by the following mathematical form for notational convenience: P[X = x] = pX(x).
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Figure 2.14 Probability mass function for number of successful proposals

Thecumulative distribution function(CDF) describes the probability that the random variable takes
on a value less than or equal to a given value. It is obtained asfollows

FX(x) = P[X � x] =
X

all xi≤x

pX(xi)

For example, the CDF evaluated at 1 for the random variable onFig. 2.14 is given byFX(1) =
0.116 + 0.312 = 0.428. The resulting CDF for this example is shown on Fig. 2.15.Note that the
PMF and the CDF contain the same information (each can be developed from the other) plotted in
a different way.

The PMF and CDF are theoretical versions of the frequency plot and the cumulative frequency
plot, respectively, for a data set. There are also theoretical versions of the sample statistics (in these
notes, the sample statistics are identified by a hat, for example µ̂ is the sample statistic, or estimate,
of the distribution meanµ). Themean valuefor a discrete random variable is obtained as follows

µX =
X
all xi

xipX(xi)
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Figure 2.15 Cumulative distribution function for number of successfulproposals

whereµX is the mean value ofX. Note that the mean value is a weighted average ofX, where
eachxi is weighted by its probability of occurrence. The median is the value ofX for which there
is an equal likelihood above and below, that isFX(xmedian) = 0.5. The mode is the value ofX that
is most likely, that ispX(xmode) is a maximum. For the number of awarded projects (Fig. 2.14),
µX = 1.75,xmedian= between 1 and 2, andxmode = 2.

Similarly, thevarianceis obtained as follows

σ2
X =

X
all xi

(xi � µX)2pX(xi)

whereσX is thestandard deviationof X. The c.o.v. ofX, δX, is the ratio of the standard deviation
to the mean value

δX =
σXjµX j

Finally, theskewness coefficientis obtained as follows

ψX =
1
σ3

X

X
all xi

(xi � µX)3pX(xi)

For the number of awarded projects (Fig. 2.14),σX = 1.07,δX = 0.61 andψX = 0.28.

An important tool when working with random variables is expectation. Theexpectationof a
quantity is the weighted average of that quantity, where thepossible values are weighted by their
corresponding probabilities of occurrence. For example, the expected value ofX, denoted E[X],
is given by the following

E[X] =
X
all xi

xipX(xi)

Note that the mean ofX, µX, is equal to its expected value, E[X]. The expected value of any
function ofX, denotedg(X), can be obtained similarly

E[g(X)] =
X
all xi

g(xi)pX(xi)
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For example, the variance ofX is equal to the expected value ofg(X) = (X � µX)2.

Expectation is a useful tool in working with multiple randomvariables and functions of random
variables, as you will see in later chapters. It is also a useful tool in decision making, as discussed in
the previous chapter. As a simple, practical example of expectation, consider the random variable
describing the number of projects awarded to a consulting firm in the next month (Fig. 2.14). If
the revenue of each project is $50,000, then the expected revenue in the next month is obtained as
follows

E[revenue] = E
�
$50,000X

�
= $0(0.116) + $50,000(0.312)

+ $100,000(0.336) + $150,000(0.181)

+ $200,000(0.049) + $250,000(0.005)

= $87,500

We could also evaluate the expected profit. If at least $50,000 of new revenue is required to operate
the office each month, 20% profit is realized on the next $100,000, and 30% profit is realized for
revenue above $150,000, then the expected profit is calculated as follows

E
�
profit

�
= $0(0.116) + $0(0.312)

+ $10,000(0.336) + $20,000(0.181)

+ $35,000(0.049) + $50,000(0.005)

= $8,945

Clearly, this office needs to find more sole-sourced projects, or cut its overhead.

Several of the most common models for discrete random variables are summarized in Table 2.5.
The PMF shown on Fig. 2.14 is an example of a binomial distribution with n = 5 (there are a
maximum of five projects that could be awarded) andp = 0.35 (the probability of winning an
individual project is assumed to be 35 percent).

Table 2.5 Common Models for Discrete Random Variables

Distribution PDF Mean Variance Explanation Example

Binomial
pX(x) =

n!
x!(n − x)!

px(1−p)n−x

x = 0, 1, . . . , n

np np(1− p)

X represents num-
ber of occurrences in
n independent trials,
wherep is probabil-
ity of occurrence per
trial

flood
occurrences

Geometric
pX(x) = p(1− p)x−1

x = 1, 2, . . .

1
p

1− p

p2

X represents the
number of indepen-
dent trials to the
next occurrence,
wherep is probabil-
ity of occurrence per
trial

flood return
period

Poisson
pX(x) =

(νt)x

x!
e−νt

x = 0, 1, . . .

νt νt

X represents the
number of indepen-
dent occurrences in
an interval of timet,
whereν is the aver-
age occurrence rate

earthquake
occurrences
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2.4.3 Continuous Random Variables

Continuous random variables can take on any value within thesample space. Total unit weight is
an example of a continuous random variable; it can take on anyvalue greater than zero.

Theprobability density function(PDF) for a continuous random variable describes its probability
distribution. An example PDF is shown on Fig. 2.16. While thePDF is similar to the PMF in the
information that it conveys, there is significant difference in these two functions. For a continuous
random variable, there is an infinite number of possible values within the sample space. Hence,
unlike a discrete random variable, it is not possible to define the probability of the event thatX
is equal to a given valuex, since this probability is vanishingly small. Instead, we can define the
probability thatX is within a very small interval. This probability is proportional to the PDF. For
example, the probability that the unit weight is within a small interval about 110 pcf is greater than
the probability that it is within a small interval about 125 pcf (Fig. 2.16). The PDF is denoted
mathematically asfX(x).
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Figure 2.16 Probability density function for unit weight

As with a discrete random variable, thecumulative distribution function(CDF) for a continuous
variable describes the probability that the variable takeson a value less than or equal to a given
value. It is obtained as follows

FX(x) = P[X � x] =
Z x

−∞

fX(ξ) dξ

Note that the CDF is the area under the PDF. For example the CDFevaluated at 110 pcf for the
unit weight is equal to 0.62 (Fig. 2.16). A plot of the CDF for unit weight is shown on Fig. 2.17.

Since the probability of the sample space is equal to 1.0, thearea under the PDF must equal 1.0.
Recall that the area under a frequency density plot for a dataset is also equal to 1.0. Therefore,
theoretical PDFs can be fit to model a data set by overlaying a theoretical PDF on top of a
frequency density plot. For example, Fig. 2.18 shows the theoretical PDF for the unit weight
(Fig. 2.16) overlain on the frequency density plot (Fig. 2.6).
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Figure 2.17 Cumulative distribution function for unit weight
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Figure 2.18 Probability density function and frequency density plot for unit weight

The expectation for a continuous random variable is defined in the same way as for a discrete random
variable; it is a weighted average, in which values are weighted by their likelihood. However, since
there is an infinite number of possible values in the sample space, the process of summing up values
weighted by their likelihoods is an integration

E[g(X)] =
Z ∞

−∞

g(x)fX(x) dx

Similarly, themean, varianceandskewnessfor a continuous random variable are found as follows

µX = E[X] =
Z ∞

−∞

xfX(x) dx

σ2
X = E

�
(X � µX)2

�
=
Z ∞

−∞

(x� µX)2fX(x) dx
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ψX =
E
�
(X � µX)3

�
σ3

X

=

R∞

−∞
(x� µX)3fX(x) dx

σ3
X

Common models for continuous random variables are summarized in Table 2.6. The normal
distribution and the related lognormal distribution are the most common random variable models,
and they will be discussed further in this section.

Table 2.6 Common Models for Continuous Random Variables

Distribution PDF Mean Variance Explanation Example

Uniform
fX(x) =

1
b − a

, a ≤ x ≤ b
a + b

2
(b − a)2

12
test bias

Triangular

fX(x) =







2
b−a

(

x−a
u−a

)

a ≤ x ≤ u

2
b−a

(

b−x
b−u

)

u ≤ x ≤ b

a + b + u

3

1
18(a2+b2+u2

−au−bu−ab)
construction
cost

Exponential fX(x) = νe−νx, x ≥ 0 1
ν

1
ν2

X represents the
time between
independent oc-
currences, where
ν is the ave. oc-
currence rate

earthquake
return
period

Normal
fX(x) =

1

σ
√

2π
e
−

1
2

(

x−µ

σ

)2

−∞ < x < ∞

µ σ2
X represents the
sum of many
random variables

soil strength

Lognormal
fX(x) =

1

xσln X

√
2π

e
−

1
2

(

ln x−µln X
σln X

)2

x ≥ 0

eµln X + 1
2σ2

ln X µ2
X

(eσ2
ln X − 1) X represents the

product of many
random variables

hydraulic
conductivity

Thenormal distribution(also known as theGaussian distribution) is the classic bell-shaped curve
that arises frequently in data sets. For example, the undrained shear strength to depth ratio data
from Fig. 2.13 are fit well by a normal distribution (Fig. 2.19). The normal distribution is common
in nature because it results if individual random variablesare summed together. Hence, data sets
ranging from course grades (the summation of scores from individual tests, homework problems
and projects) to the height of people (the summation of gene pools over many generations) to the
undrained shear strength of soil (the summation of shear resistance between individual particles)
all tend toward normal distributions.

The normal distribution has several interesting properties. First, it is a symmetrical distribution
(ψ is zero for a normal PDF). Second, its tails decay in an exponential manner. There is a 68-
percent chance that a normal variable will be within�1 standard deviation from the mean value,
a 95-percent chance that it will be withinµ � 2σ, and a 99.7-percent chance that it will be within
µ� 3σ. Therefore, it is very unlikely (less than one-percent chance) to observe a value outside of�3 standard deviations from the mean value. Finally, a linearfunction of a normally distributed
variable also has a normal distribution. IfY = aX + b andX has a normal distribution, thenY also
has a normal distribution with meanµY = aµX + b and standard deviationσY = aσX.
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Figure 2.19 Probability density function for strength ratio

The CDF for a normal distribution (the integral of the PDF) cannot be derived analytically. However,
it is widely tabulated and available on most spreadsheet programs. The first step in using these
tables is to normalizeX by subtracting its mean value and dividing by its standard deviation:

Z =
X � µX

σX

whereZ is the normalized version ofX; it has mean zero and unit variance. The tables then list
the CDF evaluated atx as a function ofz: FX(x) = Φ(z) whereΦ is called the standard normal
function. The standard normal values, as a function ofz, are provided in Table 2.7. The function
NORMSDIST(z) in Microsoft ExcelR
 also gives the standard normal function,Φ(z).

As an example of working with the standard normal function, consider the undrained shear strength
to depth ratio data on Fig. 2.19. The probability that this ratio is less than 12 psf/ft is calculated as
follows

P
�
X � 12 psf/ft

�
= FX(x = 12) =Φ

�
x� µX

σX

�
= Φ

�
12� 8.63

2.11

�
= Φ(1.60) = 0.945

Similarly, the probability that the ratio is greater than 12psf/ft can be calculated as follows since
the total area under the PDF is equal to 1.0

P
�
X > 12 psf/ft

�
= 1� P[X � 12] = 1� 0.945 = 0.055

The probability that the strength ratio is less than 4 psf/ftis calculated as follows

P
�
X � 4 psf/ft

�
= FX(x = 4) = Φ

�
4� 8.63

2.11

�
= Φ(�2.19)

Although Table 2.7 does not listΦ(z) values forz < 0, these probabilities can be calculated as
follows, since the normal distribution is symmetrical

P
�
X � 4 psf/ft

�
= Φ(�2.19) = 1�Φ(2.19) = 1� 0.986 = 0.014
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Table 2.7   Tabulated Values for Standard Normal Distribution

z Φ(z) z Φ(z) z Φ(z) z Φ(z) z Φ(z) z Φ(z) z Φ(z)

0.00 0.50000 0.50 0.69146 1.00 0.84134 1.50 0.93319 2.00 0.97725 2.50 0.99379 3.00 0.99865
0.01 0.50399 0.51 0.69497 1.01 0.84375 1.51 0.93448 2.01 0.97778 2.51 0.99396 3.01 0.99869
0.02 0.50798 0.52 0.69847 1.02 0.84614 1.52 0.93574 2.02 0.97831 2.52 0.99413 3.02 0.99874
0.03 0.51197 0.53 0.70194 1.03 0.84850 1.53 0.93699 2.03 0.97882 2.53 0.99430 3.03 0.99878
0.04 0.51595 0.54 0.70540 1.04 0.85083 1.54 0.93822 2.04 0.97932 2.54 0.99446 3.04 0.99882
0.05 0.51994 0.55 0.70884 1.05 0.85314 1.55 0.93943 2.05 0.97982 2.55 0.99461 3.05 0.99886
0.06 0.52392 0.56 0.71226 1.06 0.85543 1.56 0.94062 2.06 0.98030 2.56 0.99477 3.06 0.99889
0.07 0.52790 0.57 0.71566 1.07 0.85769 1.57 0.94179 2.07 0.98077 2.57 0.99492 3.07 0.99893
0.08 0.53188 0.58 0.71904 1.08 0.85993 1.58 0.94295 2.08 0.98124 2.58 0.99506 3.08 0.99897
0.09 0.53586 0.59 0.72240 1.09 0.86214 1.59 0.94408 2.09 0.98169 2.59 0.99520 3.09 0.99900
0.10 0.53983 0.60 0.72575 1.10 0.86433 1.60 0.94520 2.10 0.98214 2.60 0.99534 3.10 0.99903
0.11 0.54380 0.61 0.72907 1.11 0.86650 1.61 0.94630 2.11 0.98257 2.61 0.99547 3.11 0.99906
0.12 0.54776 0.62 0.73237 1.12 0.86864 1.62 0.94738 2.12 0.98300 2.62 0.99560 3.12 0.99910
0.13 0.55172 0.63 0.73565 1.13 0.87076 1.63 0.94845 2.13 0.98341 2.63 0.99573 3.13 0.99913
0.14 0.55567 0.64 0.73891 1.14 0.87286 1.64 0.94950 2.14 0.98382 2.64 0.99585 3.14 0.99916
0.15 0.55962 0.65 0.74215 1.15 0.87493 1.65 0.95053 2.15 0.98422 2.65 0.99598 3.15 0.99918
0.16 0.56356 0.66 0.74537 1.16 0.87698 1.66 0.95154 2.16 0.98461 2.66 0.99609 3.16 0.99921
0.17 0.56749 0.67 0.74857 1.17 0.87900 1.67 0.95254 2.17 0.98500 2.67 0.99621 3.17 0.99924
0.18 0.57142 0.68 0.75175 1.18 0.88100 1.68 0.95352 2.18 0.98537 2.68 0.99632 3.18 0.99926
0.19 0.57535 0.69 0.75490 1.19 0.88298 1.69 0.95449 2.19 0.98574 2.69 0.99643 3.19 0.99929
0.20 0.57926 0.70 0.75804 1.20 0.88493 1.70 0.95543 2.20 0.98610 2.70 0.99653 3.20 0.99931
0.21 0.58317 0.71 0.76115 1.21 0.88686 1.71 0.95637 2.21 0.98645 2.71 0.99664 3.21 0.99934
0.22 0.58706 0.72 0.76424 1.22 0.88877 1.72 0.95728 2.22 0.98679 2.72 0.99674 3.22 0.99936
0.23 0.59095 0.73 0.76730 1.23 0.89065 1.73 0.95818 2.23 0.98713 2.73 0.99683 3.23 0.99938
0.24 0.59483 0.74 0.77035 1.24 0.89251 1.74 0.95907 2.24 0.98745 2.74 0.99693 3.24 0.99940
0.25 0.59871 0.75 0.77337 1.25 0.89435 1.75 0.95994 2.25 0.98778 2.75 0.99702 3.25 0.99942
0.26 0.60257 0.76 0.77637 1.26 0.89617 1.76 0.96080 2.26 0.98809 2.76 0.99711 3.26 0.99944
0.27 0.60642 0.77 0.77935 1.27 0.89796 1.77 0.96164 2.27 0.98840 2.77 0.99720 3.27 0.99946
0.28 0.61026 0.78 0.78230 1.28 0.89973 1.78 0.96246 2.28 0.98870 2.78 0.99728 3.28 0.99948
0.29 0.61409 0.79 0.78524 1.29 0.90147 1.79 0.96327 2.29 0.98899 2.79 0.99736 3.29 0.99950
0.30 0.61791 0.80 0.78814 1.30 0.90320 1.80 0.96407 2.30 0.98928 2.80 0.99744 3.30 0.99952
0.31 0.62172 0.81 0.79103 1.31 0.90490 1.81 0.96485 2.31 0.98956 2.81 0.99752 3.31 0.99953
0.32 0.62552 0.82 0.79389 1.32 0.90658 1.82 0.96562 2.32 0.98983 2.82 0.99760 3.32 0.99955
0.33 0.62930 0.83 0.79673 1.33 0.90824 1.83 0.96638 2.33 0.99010 2.83 0.99767 3.33 0.99957
0.34 0.63307 0.84 0.79955 1.34 0.90988 1.84 0.96712 2.34 0.99036 2.84 0.99774 3.34 0.99958
0.35 0.63683 0.85 0.80234 1.35 0.91149 1.85 0.96784 2.35 0.99061 2.85 0.99781 3.35 0.99960
0.36 0.64058 0.86 0.80511 1.36 0.91309 1.86 0.96856 2.36 0.99086 2.86 0.99788 3.36 0.99961
0.37 0.64431 0.87 0.80785 1.37 0.91466 1.87 0.96926 2.37 0.99111 2.87 0.99795 3.37 0.99962
0.38 0.64803 0.88 0.81057 1.38 0.91621 1.88 0.96995 2.38 0.99134 2.88 0.99801 3.38 0.99964
0.39 0.65173 0.89 0.81327 1.39 0.91774 1.89 0.97062 2.39 0.99158 2.89 0.99807 3.39 0.99965
0.40 0.65542 0.90 0.81594 1.40 0.91924 1.90 0.97128 2.40 0.99180 2.90 0.99813 3.40 0.99966
0.41 0.65910 0.91 0.81859 1.41 0.92073 1.91 0.97193 2.41 0.99202 2.91 0.99819 3.41 0.99968
0.42 0.66276 0.92 0.82121 1.42 0.92220 1.92 0.97257 2.42 0.99224 2.92 0.99825 3.42 0.99969
0.43 0.66640 0.93 0.82381 1.43 0.92364 1.93 0.97320 2.43 0.99245 2.93 0.99831 3.43 0.99970
0.44 0.67003 0.94 0.82639 1.44 0.92507 1.94 0.97381 2.44 0.99266 2.94 0.99836 3.44 0.99971
0.45 0.67364 0.95 0.82894 1.45 0.92647 1.95 0.97441 2.45 0.99286 2.95 0.99841 3.45 0.99972
0.46 0.67724 0.96 0.83147 1.46 0.92785 1.96 0.97500 2.46 0.99305 2.96 0.99846 3.46 0.99973
0.47 0.68082 0.97 0.83398 1.47 0.92922 1.97 0.97558 2.47 0.99324 2.97 0.99851 3.47 0.99974
0.48 0.68439 0.98 0.83646 1.48 0.93056 1.98 0.97615 2.48 0.99343 2.98 0.99856 3.48 0.99975
0.49 0.68793 0.99 0.83891 1.49 0.93189 1.99 0.97670 2.49 0.99361 2.99 0.99861 3.49 0.99976
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Finally, we can calculate the probability that the undrained strength is less than a design value of
250 psf at a depth of 50 ft. LetY = 50X. Then,Y has a normal distribution with a mean of
50(8.63) = 432 psf and a standard deviation of 50(2.11) = 106 psf. The probability thatY is less
than 250 psf is calculated as follows

P
�
Y � 250 psf

�
= Φ

�
250� 432

106

�
= Φ(�1.72) = 1� Φ(1.72) = 1� 0.957 = 0.043

The lognormal distributionis related to the normal distribution as follows: if the logarithm of a
variable has a normal distribution, then the variable has a lognormal distribution. The lognormal
distribution is commonly used for three reasons. First, it results if you multiply many individual
random variables together. Hence, any process that is the product of individual random variables
will tend to be described by a lognormal distribution. Second, the lognormal distribution models
variables that cannot be less than zero. Since many engineering properties, such as strength, are
non-negative, the lognormal distribution is a reasonable model. Finally, the lognormal distribution
is convenient for modeling quantities that vary over several orders of magnitude, such as hydraulic
conductivity.

An example of a lognormal distribution for the hydraulic conductivity data set is shown on Fig. 2.20.
Note that this distribution is symmetrical when plotted on alogarithmic scale, but positively skewed
on an arithmetic scale.
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Figure 2.20 Probability density function for hydraulic conductivity

Since the lognormal distribution is related to the normal distribution, the CDF for the lognormal
distribution can be calculated using the standard normal function. The relationship between the
two is as follows

P[X � x] = FX(x) = Φ

�
ln(x) � µln X

σln X

�
whereX has a lognormal distribution with parametersµln X andσln X (Table 2.6), which are just the
mean and standard deviation of ln(X). For example, the probability that the hydraulic conductivity
(Fig. 2.20) is greater than 1�10−7 cm/s is calculated as follows

P
�
X > 1�10−7 cm/s

�
= 1� Φ

�
ln(1�10−7)� (�18.0)

1.41

�
= 1�Φ(1.33) = 1� 0.908 = 0.092
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2.5 Reliability-Based Design

Reliability-based design approaches are becoming common in civil engineering. For example, U.S.
codes for concrete and steel design are reliability-based.In addition, a reliability-based approach
was adopted by the European Community in the new Eurocode standards. These approaches are
referred to by the names Load and Resistance Factor Design (LRFD) in the U.S. and Limit State
Design (LSD) in Europe.

The objective of a reliability-based design approach is to assure satisfactory system performance
within the constraint of economy. Most designs are developed without the benefit of complete
information and under conditions of uncertainty. What maximum load will a structure experience
over its lifetime? How will the strength of steel change as a function of time due to corrosion?
Because of these uncertainties, there always exists a chance or risk of failure. In most cases, it is
not practical or economical to eliminate this risk. All design approaches implicitly balance costs
and benefits; a reliability-based approach attempts to achieve this balance in a more systematic and
rational manner.

2.5.1 Traditional Design Approach

Conceptually, most problems can be described in terms of a load,S, and a resistance,R. The load
represents the load applied to the system (e.g., an axial load on a column, the volume of water
entering a treatment facility, etc.), while the resistancerepresents the capacity of the system (e.g.,
the axial capacity of column, the capacity of a treatment plant, etc.). Traditional design approaches
are deterministic. We account for uncertainties in the loadand resistance by requiring a resistance
that is greater than the estimated load

Rreqd � FSS

whereFS is a factor of safety. The factor of safety typically ranges between 1.0 and 3.0; however
values as large as 10 or 100 may be used in some instances.

For example, consider an offshore pile that is subjected to aload of 4,000 kips during a storm,
S = 4,000 kips. Using a factor of safety of 1.5, we determine that the required pile capacity should
exceed 1.5(4,000), orRreqd � 6,000 kips.

2.5.2 Reliability-Based Design Approach

With a reliability-based approach, we attempt to account explicitly for uncertainties in the load and
resistance. For example, assume that the load is modeled with a normal distribution with a mean
of 4,000 kips and a c.o.v. of 0.20. Also, assume that the resistance is normally distributed with a
mean value that is 1.5 times the mean load,µR = 1.5µS = 6,000 kips, and a c.o.v. of 15 percent.
We can now calculate the probability that the load exceeds the resistance as follows

P[S > R] = P[R � S] = P[R� S � 0] = P[X � 0]

Recall that one objective in developing theoretical randomvariable models was to provide a
mathematical framework for combining random variables. Itcan be shown that a linear combination
of normal random variables, such asX = R�S, whereR andS have normal distributions, will also
have a normal distribution. Further, the mean and standard deviation forX are given as follows

µX = µR � µS = 6,000� 4,000 = 2,000 kips
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σX =
p
σ2

R + σ2
S =

p
(0.2� 4,000)2 + (0.15� 6,000)2 = 1,200 kips

assuming thatR andS are statistically independent. The probability that the load exceeds the
resistance is then calculated as follows

P[X � 0] = Φ

�
0� 2,000

1,200

�
= Φ(�1.67) = 0.047

Therefore, the probability of failure for this column is 0.047, and itsreliability is 0.953 or 95.3
percent. The factor 1.67 in the above equation is known as thereliability index, β. Asβ increases,
the probability of failure decreases. Hence,β is similar in behaviour to the factor of safety.

What if there is more uncertainty in the resistance, and its c.o.v. increases from 15 to 20 percent?
Using the same factor of safety (i.e.,FS = 1.5), we will obtain a different probability of failure.
The mean value ofX remains the same, butσX increases from 1,200k to 1,440k. The probability
of failure increases from 0.047 to 0.082, and the reliability decreases from 95.3 percent to 91.8
percent. Therefore, a consistent factor of safety of 1.5 does not necessarily produce a consistent
level of reliability.

By explicitly accounting for uncertainties, we can attemptto achieve a consistent level of reliability
using the reliability-based design approach. We can establish the required mean resistance,µR, to
achieve a specified reliability (i.e., a target probabilityof failure). For example, what shouldµR be
to obtain a reliability of 99 percent? We can answer this question as follows

Φ�β � 0.01

β � 2.33
∴ µX � 2.33σX

By substituting the equations forµX andσX from above, we obtain

µR � 4,000� 2.33
p

8002 + (0.15µR)2

Solving forµR, we find that the probability of failure will be less than or equal to 0.01 ifµR � 7,110
kips. Therefore, we will achieve our target level of reliability if we multiply the mean load by a
"safety factor" of 7,110/4,000, or 1.78.

In summary, a reliability-based design approach consists of the following steps:

1) Select a target probability of failure,pF . This failure probability is established considering
costs, consequences of failure, engineering judgment, politics and experience. Historical
failure probabilities for civil engineering facilities are between 10−3 to 10−4; therefore, target
failure probabilities for new designs are typically withinthis range.

2) Calculate the required reliability index,β, to achieve the target failure probability

β = �Φ
−1(pF )

If S andR are statistically independent normal variates, then

β =
µR � µSp
σ2

R + σ2
S

3) Find the mean resistance required to achieve the targetβ.
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2.5.3 From Theory to Practice

Practice is not yet ready (or willing) to implement a fully probabilistic design approach. Design
codes are being developed using probabilistic analyses; however, the codes themselves are still
deterministic. The following general equation is used to determine the required mean resistance

φµR � γµS

where the load and resistance factors,γ (load factor) andφ (resistance factor), are specified for
different design cases. In our example, we assumed thatφ was equal to 1.0, and found thatγ was
2.21 to achieve a target failure probability of 0.01. The load and resistance factors are intended to
account for uncertainties inR andS, and they are developed from probabilistic analyses of typical
design cases. However, the uncertainties and target failure probabilities used in the probabilistic
analyses are transparent to the code user; only the load and resistance factors themselves are
specified.

2.5.4 Advantages and Limitations of a Reliability-Based Design Approach

There are several advantages in using a reliability-based approach versus the traditional approach:

1) A factor of safety does not provide information on the level of safety in the design. The same
factor of safety may produce two designs that have differentreliabilities. A reliability-based
approach allows us to quantify the reliability, and load andresistance factors are developed to
achieve consistent levels of reliability among different designs.

2) Factors of safety are based on experience with similar designs. What if we don’t have experience
(e.g., a new construction material or a new environment)? What if our experience is not positive?
A reliability-based approach provides the ability to develop new designs that achieve a specified
reliability.

3) Since a factor of safety has no real meaning in terms of reliability, it is difficult to select an
optimum factor of safety. By quantifying reliability, we can perform cost-benefit analyses to
balance construction costs against the risk of failure.

However, reliability-based approaches in their current form (e.g., LRFD) do have limitations. The
code user does not have control over the target failure probability, and cannot directly incorporate
the uncertainties associated with their specific design. Further, even a purely probabilistic approach
cannot prevent poor engineering; it can only help to make good engineering better.



Chapter 3

Correlation, Multiple RV’s, and System Reliability

by Wilson Hon C. Tang

3.1 Correlation in Geotechnical Engineering

Empirical relations are often used in geotechnical engineering to correlate soil properties. For
example, the compression indexCc with the void ratio e or liquid limitLL, relative densityDr with
SPT, and strength ratioSu/s

′p with Plasticity IndexIp.

The purpose is to estimate soil parameters needed for analysis and design by using some indirect
index properties that are relatively cheaper and easier to obtain. If indeed an excellent relation
existed between the properties, this would provide a cost effective way for obtaining the required
soil parameters. Oftentimes, the empirical relations could be far from perfect and hence the
additional implicit uncertainties associated with this approach need to be assessed.

Fig. 3.1 shows two hypothetical empirical relations that have been established from test data.
Clearly one would have more confidence in using relationshipA. But an engineer may like to know
how reliable it is in using relationship B. Would the reliability improve if one increased the number
of indirect tests used, and by how much? Should the engineer use only direct tests? Could one
supplement the information from limited number of direct tests with less costly indirect tests? To
address these questions, the probabilistic implication ofusing an empirical relation is presented as
follows.

Consider the simple case where the empirical relation is approximately linear and the scatter of
the data is approximately constant about the prediction curve. A linear regression with constant
variance can be performed (e.g. see Ang and Tang, 1975) to obtain an estimate of the mean value
of Y as a function ofx, i.e.E

�
Y jx� = a+ bx, and also an estimate for the variance, i.e. Var

�
Y jx�.

The former denotes the predicted value ofY for a given value ofx whereas the latter denotes a
measure of the error associated with using the empirical relation for prediction; in fact, the square
root of Var

�
Y jx� is referred to as the calibration error, i.e.σC. If the empirical relation has been

established by using only a limited set of data, then additional estimation error will arise due to the
lack of sufficient data for establishing the empirical relation. However this error will be generally
small relative to the calibration error and it will be neglected in the subsequent examples.

In the following example, we try to compare the predicted value of a soil parameter and its prediction
error based on several sources of information namely:

1) n direct tests

2) m indirect tests

3) subjective judgment

39
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Figure 3.1 Example empirical relationships

For simplicity, the tests are assumed to be statistically independent. For the direct tests, the
prediction error is proportional to the scatter of the data but inversely proportional to the number
of testsn. For the indirect tests, the calibration errorσc has to be added (in a root mean square
sense) to the scatter of the data. Lastly, based on subjective judgement, the uncertainty of the soil
parameter is described by a distribution for which the corresponding mean and standard deviation
can be inferred asµ′ andσ′ respectively. Bayesian probability procedure is used for combining the
estimates.
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Assuming soil samples are statistically independent, the error associated with an estimate of the
mean can be calculated as follows;

1) from direct tests;

µ̂X =
1
n

nX
i=1

xi (estimator)

σ̂µ̂X
=
σ̂Xp
n

(estimator error)

whereσ̂X is the estimated standard deviation ofX.

2) from indirect tests;

µ̂X =
1
m

mX
i=1

xci

σ̂µ̂X
=

r
σ̂2

X + σ2
c

m

whereσc is the standard deviation of the random calibration error.

σ

x

x
x, blow count

x  , cohesion

2

 c

 ci

i

c

Figure 3.2

3) from subjective judgement

µ̂X = µ′

σ̂µ̂X
= σ′

An example to follow describes how 7 triaxial tests and 9 blowcount values can be combined with
judgmental information to yield the overall estimate of themean cohesion of residual clay for Hong
Kong and a measure of its overall error. The empirical relation used is

c′ = 38N (in psf)
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whereN is the blow count (in blows per ft) with a calibration error of750 psf based on the data
reported by Lumb (1968) for residual soil in Hong Kong.

Example 1: Estimation of Mean Cohesion of Residual Clay

Assume ˆσX = 215. Sources of information;

i) experience: 2100� 500 psf with 95% probability

µ̂X1
= 2100

σ̂µ̂X1
= 255

ii) 7 triaxial tests:f2150,1890,1950,1650,2340,1980,2040g psf

µ̂X2
=

1
7

7X
i=1

xi = 2000

σ̂µ̂X2
=

215p
7

= 81.3

iii) 9 blow count values:f28,45,35,52,67,71,48,50,58g blows per foot

µ̂X3
=

1
9

9X
i=1

38Ni = 1917

σ̂µ̂X3
=

r
2152 + 7502

9
= 260

Combining (i) and (ii) gives

µ̂X =
2100� 81.32 + 2000� 2552

81.32 + 2552 = 2009

σ̂µ̂X
=

81.3� 255p
81.32 + 2552

= 77.5

Combining further with (iii) gives

µ̂X =
2009� 2602 + 1917� 77.52

2602 + 77.52 = 2002

σ̂µ̂X
=

260� 77.5p
2602 + 77.52

= 74.3

The coefficient of variation of the final mean estimate is ˆσµ̂X
/µ̂X = 74.3/2002 = 3.7%.

Observations:

1) The prediction error using indirect tests could be smaller than that using direct tests provided
that more indirect tests are used and the calibration error is relatively small.
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2) In combining estimates from two sources of information, the formula for calculating the
weighted mean is inversely proportional to the error of the respective estimates. Also the error
of the combined estimate is always smaller than the error of the individual estimate.

Further reference:

1. Lumb, P., "Statistical Aspects of Field Measurements," Proceedings, Fourth Australian
Road Research Conference, 1968, p.1761.

2. Tang, W., "A Bayesian Evaluation of Information for Foundation Engineering Design", in
Statistics and Probability in Civil Engineering, Proceedings of the First ICASP, Hong
Kong University Press, 1971, pp.174-185.

3.2 Performance Involving Multiple Random Variables

The following examples are used to demonstrate reliabilityproblems that involves more than one
random variable. In this case, the degree of correlation between random variables will be important
factor affecting the reliability.

Example 2: Differential settlement between footings

Consider two adjacent footings as shown in Fig. 3.3. Supposethe settlement of each footing follows
a normal distribution with a mean of 2 inches and a standard deviation of 0.5 inches. Assume that
a differential settlement exceeding say 1 inch is considered to be unacceptable. Determine the
probability of unacceptable differential settlement among this pair of footings.

2S S1

Figure 3.3

Case 1: The settlements are statistically independent

Let
D = S1 � S2

whereS1 andS2 denote the settlement of footings 1 and 2. It could be shown thatD also follows
a normal distribution with mean and standard deviation as follows:

µD = µS1
� µS2

= 2� 2 = 0

σD =
q
σ2

S1
+ σ2

S2
=
p

0.52 + 0.52 = 0.707
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Hence, the probability of unacceptable differential settlement is

P
�jDj > 1

�
= P[D > 1] + P[D < �1] = 2P[D > 1]

= 2

�
1� Φ

�
1� 0
0.707

��
= 0.157

Case 2: The settlements are correlated

Generally, the load and soil properties affecting the settlements between adjacent footings are

similar. Suppose the correlation coefficient,ρ, is 0.8, thenD is also normal with mean value 0 but

its standard deviation becomes

σD =
q
σ2

S1
+ σ2

S2
� 2ρσS1

σS2

=
p

0.52 + 0.52 � 2(0.8)(0.5)(0.5)

= 0.316

and the probability of unacceptable differential settlement becomes

P
�jDj > 1

�
= P[D > 1] + P[D < �1] = 2P[D > 1]

= 2

�
1� Φ

�
1� 0
0.316

��
= 0.00156

On the other hand, if indeed the settlements of the two footings are the same, i.e. perfectly correlated

with ρ = 1, then

σD =
p

0.52 + 0.52 � 2(1)(0.5)(0.5) = 0

and hence P
�jDj > 1

�
will equal to zero.

Fig. 3.4 shows how the probability of unacceptable differential settlement decreases with increasing

correlation. In other words, the effect of correlation is toimprove the performance reliability;

neglecting this correlation effect could be very conservative.
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Figure 3.4 Probability of unacceptable differential settlement

Extension to multiple footings

Consider a grid of footings as shown in Fig. 3.5. Determiningthe probability of excessive
settlement or differential settlement by following an analytical approach like that above will be very
cumbersome. A practical procedure is through the Monte Carlo Simulation method. The method
calls for the simulation of possible scenarios on the settlement values of each footing according
to the probability distributions of the random variables involved, and then infer the probability
of various events from the observed outcomes of all simulation runs. In the example as shown,
three different models are studied where soft pocket can be present (in models 2 and 3) in an
otherwise stiff medium. The soft pocket is considered an anomaly A whose occurrence between
footings can be correlated (as in model 3). The probability of various settlement performance
indicators (e.g., maximum settlement > allowable settlement, or maximum differential settlement
between adjacent footings > allowable differential settlement) are presented in Fig. 3.5 for the three
models. Generally, potential presence of anomalies worsenthe performance (i.e. by increasing the
probability of unsatisfactory performance); however, correlation between anomaly presence under
adjacent footings improve the performance. Through the Monte Carlo Simulations procedure, the
fraction of footings that have excessive settlement can be also easily estimated as shown.
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Figure 3.5 Grid of footings each settling bySi

Model 1: S = N(1,0.3) inches
correlation coefficient = 0.6

Model 2: Probability of soft pocket = 0.01
s.i. between footings
SA = N(2,0.6) inches

Model 3: Probability of A to A = 0.02

Allowable max.S is 2 inches
Allowable max. differential settlement is 1.5 inches
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P[ Dmax > 1.5" ],  Dmax = max. diff. sett. between adjacent footings

P[ S > 2" ],  fraction of footings with S > 2"

Figure 3.6 Estimated probabilities of unsatisfactory settlement performance – Models 1, 2, and
3 (50 runs with 200 samples per run)
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Example 3: Consolidation settlement

In this example, a first order uncertainty analysis will be applied to the settlement problem. Note
that relative contribution to the overall uncertainty depends both on sensitivity factors and the
uncertainty of individual variables.

Rock

Structure

Sand

Normally Consolidated
Clay

BH

A

Figure 3.7 Settlement in consolidated clay

The actual settlement is expressed as

S = N

�
Cc

1 + eo

�
H log10

�
po + ∆p

po

�
whereN is the model error,Cc is the compression index,po is the effective pressure at B, and∆p
is the increase in pressure at B.

Given the statistics (whereδ is the coefficient of variation)

Variable Mean SD δ

N 1.0 0.100 0.1

Cc 0.396 0.099 0.25

eo 1.19 0.179 0.15

H 168 inches 8.40 0.05

po 3.72 ksf 0.186 0.05

∆p 0.50 ksf 0.100 0.20
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First order analysis of uncertainties:

If Y = g(X1,X2, . . . ,Xm) then first order estimates of the mean,µY , and coefficient of variation,

δY , of Y are

µY = g(µX1
, µX2

, . . . , µXm
)

δ2
Y =

mX
j=1

�
∂g

∂Xj

µXj

µY

�2

µ

δ2
j =

mX
j=1

S2
j δ

2
j

In this caseµS = 1.66.

Defining Sj = (∂S/∂Xj )(µXj
/µS), the components contributing to the uncertainty inS can be

found as follows;

Xj µXj
δj Sj S2

j δ
2
j %

N 1.0 0.10 1.0 0.01 8.4

Cc 0.396 0.25 1.0 0.0625 52.4

eo 1.19 0.15 -0.55 0.0068 5.7

H 168 0.05 1.0 0.0025 2.1

po 3.72 0.05 -0.94 0.0022 1.8

∆p 0.50 0.20 0.94 0.0353 29.6

Giving δS = 0.345.

3.3 Multiple Failure Modes - System Reliability

Example 4: Retaining wall

Three failure modes can be identified in Fig. 3.8, namely (i) overturning of the wall, (ii) horizontal

sliding of the wall and (iii) bearing capacity failure of thefoundation. The system probability of

failure will be the probability of at least one of these modeswill occur. Because of the correlation

between the failure modes, the system failure probability can only be practically determined in

terms of bounds. First order reliability method (FORM) was used first in determining the failure

probability of individual mode.

Note that in the conventional approach, one can only determine the factor of safety for each mode;

however, in the probabilistic approach, one can combine theindividual failure mode probability to

estimate the total failure probability for the system.
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2’ surcharge to account for highway load

Backfill

γ = 0.11 Kcf

φ = 34  , δ  = 10%φ

Figure 3.8 Retaining wall reliability

Potential Failure Modes:

1) Overturning of wall
g1(X∼ ) = 112.5� 195.1 tan2

�
45� φ

2

�
2) Horizontal sliding of the wall

g2(X∼ ) = 20.14 tanδ � 26.6 tan2 �45� φ
2

�
3) Bearing capacity failure of wall foundations

– assume negligible contribution in this example

For the overturning mode,
pF1

= 0.3�10−7

For the horizontal sliding mode,
pF 2

= 0.01044

Hence the first-order bounds on the failure probability are

0.01044� pF � 0.01044 + 0.3�10−7

indicating that the failure probability is about 0.01044. The first order bound is sufficient in this
case because there is a dominant failure mode, namely the horizontal sliding.

Example 5: Slope failure

For a given slope, there could be thousands of potential slipsurfaces. The slopes can fail through
sliding along each of those slip surfaces, although with varying likelihood. Hence the probability
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of slope failure would be equal to the probability that at least one of these slip surfaces will have
resistance less than the driving load caused by the weight ofthe soil. Fortunately in this case, the
soil resistance between individual slip surfaces are highly correlated. Hence the system failure
probability could be close to the slip surface with the highest probability of failure. For example,
Oka & Wu (1990) show that for a cut slope in Chicago, the probability of failure considering all
slip surfaces is less than twice the failure probability of the most critical slip surface.

Note that in the non-probabilistic approach, we consider only the slip surface with the lowest
factor of safety. The questions of: "Is that really the most critical slip surface considering various
uncertainties?" and "How would all those other potential slip surfaces affect the safety level of the
slope?" are not addressed.



Chapter 4

Data Analysis/Geostatistics

by Gordon A. Fenton

4.1 Random Field Models

Consider a clay barrier of extent 40�40 metres. If permeability tests were carried out at sufficiently

close spacing, the permeabilityK might appear as shown in Fig. 4.1, which plots log-permeability

against spatial position. Clearly this permeability field,K(x
∼

), appears quite random. In the

following, vectors will be denoted by underscoring the symbol with a tilde character, so thatx
∼

is a vector describing a spatial position with coordinates (x1, x2, x3) in three-dimensional space.

Similarly, matrices will be denoted by underscoring with two tildes, for exampleA
≈

.

It seems reasonable to make the following observations about the field displayed in Fig. 4.1;

- points which are very close together tend to have similar permeabilities, that is the permeabilities

arehighly correlated.

- points which are far apart may have quite different permeabilities. In this case the permeabilities

arepoorly correlated.

In general, correlation between points tends to decrease with distance.

To produce a plot like that shown in Fig. 4.1, a significant amount of information must be gathered

from the field, which is an expensive undertaking. On the other hand, if the information is not

gathered then the permeability at most points isuncertainand this uncertainty must enter into

any design decisions. As engineers, the task is to minimize sampling costs while still being able

to make informed decisions. For this, random fields are ideally suited as models of the spatially

distributed uncertainty and they can be used to produce probability statements regarding the design

criteria.

51
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Figure 4.1 Permeability field measured over a 40� 40 metre square.

One of the major features of a random field representation of asoil is the concept of statistical de-
pendence between field values at different points. In general a random field,X(x

∼
), is characterized

by;

1) its mean,µ(x
∼

). This may be spatially constant, or may vary as a function ofx
∼

, the latter a
feature ofnon-stationary, also callednon-homogeneous, random fields,

2) its variance,σ2(x
∼

), which represents the degree of scatter in the field about its mean,

3) its correlation structure,ρ(x
∼
, x
∼

′), which gives the correlation coefficient betweenX(x
∼

) and
X(x

∼

′) for any two pointsx
∼

andx
∼

′,

4) its higher order moments: in practice, these may be difficult to estimate accurately,

.

.

.

5) its complete multivariate joint probability density function (PDF). This is the complete prob-
abilistic description of all the points in the field from which probability calculations can be
made.

Specifically, a random field is a set of random variables,X1,X2, ..., each associated with the value
of the soil property of interest at the pointsx

∼1, x∼ 2, . . . in the field.



Probabilistic Methods in Geotechnical Engineering 53

2

x

x

x

θ
θ

τ

X(x)

1

2

1

~

2

f
X

ρ(τ )~

~

~x

1~X(x  )

2~X(x  )

Figure 4.2 2-D random field showing correlation structure and marginaldistribution.

Due to difficulties in estimating higher order moments, random field representations are often
restricted to information about the mean, variance and correlation structure. This usually leads to
the adoption of relatively simple joint pdf’s as models for the field, for example multivariate normal
or lognormal distributions. The correlation structure is often assumed to be a simple function of
distance between points, governed by a single parameter. A commonly used model is one in which
the correlation decays exponentially with distance,τ ;

ρ(τ ) = exp

��2jτ j
θ

�
where the parameterθ is call thescale of fluctuation. Loosely speakingθ is the distance beyond
which the field is effectively uncorrelated (i.e. for the above model, if the distance between two
points isτ > θ, then the correlation coefficient between these two points is less than 0.14). Another
way of looking at it is that any two points closer together than θ tend to be strongly correlated. As
a result, fields having small scales of fluctuation tend to vary erratically over shorter distances –
they appear very ‘rough’. Fields having large scales of fluctuation, according to the above model,
tend to be more slowly varying and smoother. From the point ofview of data gathering, the latter
type of field often presents problems. What may appear to be a trend in the data may in fact just be
a slow variation that sooner or later reverses direction.

How a random field model is used depends on the questions beingasked and the type of data
available. In particular, the issue of whether or not data isavailable at the site being investigated
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has a significant impact on how the random field model is definedand used. Some possible
scenarios are as follows;

1) data is gathered at the site in question over its entire domain

- here a random field is being modeled whose values are known atthe data site locations and
no attempt will be made to extrapolate the field beyond the range of the data.

- a representative random field model can always be estimated– estimates forµX, σ2
X and

correlation structure are “local” and can be considered to be reasonably accurate for the
purposes of modeling the site.

- best estimates of the random field between data sites shouldbe obtained using Best Linear
Unbiased Estimation orKriging.

- probability estimates should be obtained using the conditioned random field. One possible
approach is to use conditional simulation (all realizations pass through the known data but
are random between the data sites).

2) data is gathered at a similar site or over a limited portionof the site to be modeled

- in this case, there is much greater uncertainty in applyingthe statistics obtained from
one site to that of another or in extending the results to a larger domain. Typically some
assumptions need to be made about the ‘representativeness’of the sample. This situation
typically arises in the preliminary phases of a design problem, before the site has been
cleared, for example.

- if the statistics can be considered representative, probability estimates can be made either
analytically or through Monte Carlo simulations. Kriging is not an option since data is not
available over the domain in question.

- the treatment of trends in the data needs to be more carefully considered. If the trend
seems to have some physical basis (such as an increase in conetip resistance with depth),
then it may be reasonable to assume that the same trend existsat the site in question.
However, if the trend has no particular physical basis, thenit is entirely possible that quite
a different trend will be seen at the site in question. The random field model should be
able to accommodate this uncertainty.

4.2 Data Analysis

4.2.1 Estimating the Mean

The task of data analysis and geostatistics is to deduce froma set of data the appropriate parameters
of a random field model of the soil property(s) in question. This generally means that values for
the mean, variance and correlation structure are to be found. Unfortunately, the fact that the soil
property in question exhibits spatial correlation complicates the estimation process. To illustrate
this, consider the usual estimator of the mean;

µ̂X =
1
n

nX
i=1

Xi (4.1)

If the field can be considered stationary, so that eachXi has the same mean, then E[µ̂X] = µX and
this estimator is consideredunbiased(it is ‘aimed’ at the quantity to be estimated). It should be
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recognized that if a different set of observations ofX are used in the above, the estimated mean
will also likely be different, that is ˆµX is itself a random variable. If theXi’s areindependentthen
the variance of ˆµX decreases asn increases. Specifically,

Var [µ̂X] = σ2
X/n

which goes to zero as the number of independent observations, n, goes to infinity.

However, consider what happens when theXi’s are completely correlated, as inX1 = X2 = � � � =
Xn;

µ̂X =
1
n

nX
i=1

Xi = X1

and Var[µ̂X] = σ2
X , that is there is no reduction in the variability of the estimatorµ̂X asn increases.

In general the true variance of the estimator ˆµX will lie somewhere betweenσ2
X andσ2

X/n. In detail

Var [µ̂X] =
1
n2

nX
i=1

nX
j=1

Cov
�
Xi,Xj

�
=

"
1
n2

nX
i=1

nX
j=1

ρij

#
σ2

X ' γ(T )σ2
X

whereρij is the correlation coefficient betweenXi andXj andγ(T ) is call thevariance function.
The variance function lies between 0 and 1 and gives the amount of variance reduction that takes
place whenX is averaged over the sampling domainT = n∆x. For highly correlated fields,
the variance function tends to remain close to 1, while for poorly correlated fields, the variance
function tends towards∆x/T = 1/n. Fig. 4.3 shows examples of a processX(t) superimposed by
its average over a widthT = 0.2 for poorly and highly correlated processes. When the process is
poorly correlated, the variability of the average tends to be much smaller than that of the original
X(t), while if the process is highly correlated, the average tends to followX(t) closely with little
variance reduction.
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Figure 4.3 Effect of averaging on variance.

The implications of this discussion are as follows: while the mean is typically estimated using
Eq. (4.1), it is important to remember that, in the case of random fields with significant spatial
correlation, this estimator may itself be highly variable and increasing the number of samples
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within a fixed domain may not decrease its variability (it would be better to increase the sampling
domain size). See, for example Fig. 4.4.

On the other hand, the fact that the mean estimator may remainhighly variable is really only
important when the estimator is going to be used to model a random soil property at another site.
If the data is being gathered at the site in question, then increasing the number of samplesdoes
reduce the uncertainty at the site, even if the true mean of the soil property in general remains
questionable.

X

T

σX
^

µ̂

σX

µ

X

Figure 4.4 Local estimates of mean and variance over sampling domainT .

4.2.2 Estimating the Variance

Now consider a typical estimator of the variance;

σ̂2
X =

1
n

nX
i=1

(Xi � µ̂X)2 (4.2)

It can be shown that this is a biased estimator with expectation

E
�
σ̂2

X

�
= σ2

X

�
1� γ(T )

�
(4.3)

In the presence of correlation, ˆσ2
X < σ2

X sinceγ(T ) lies between 0 and 1. In fact ˆσ2
X ! 0 as the

field becomes increasingly correlated (sinceγ(T ) ! 1 in this case). This situation is illustrated
in Fig. 4.4 where a slowly varying (highly correlated) soil property is sampled over a relatively
short distanceT . In this case, the estimated variance is much smaller than the true variance and
the estimated mean is considerably different than the true mean. In the case where theXi’s are
independent,γ(T ) tends towards 1/n so that Eq. (4.2) is seen to be still biased. Sometimes the
unbiased estimator

σ̂2
X =

1
n� 1

nX
i=1

(Xi � µ̂X)2 (4.4)

is preferred.

Again, it can be seen that the estimate given by Eq. (4.2) tends to become quite uncertain as the
field becomes increasingly correlated. However, this is again only important if a good estimate of
the true variance is being sought – ifT denotes the site in question then the data will accurately
reflect that site (but cannot be used to extrapolate).
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4.2.3 Trend Analysis

In the preceding sections, a stationary random field was implicitly assumed, having spatially
constant mean and variance. In many cases this is not so, at least not apparently so, over the
sampling domain. Often distinct trends in the mean can be seen, and sometimes the variance also
clearly changes with position. We reiterate that if such trends are not physically based, i.e. if there
is no reason to suspect that identical trends would be repeated at another site, then their direct
estimation depends on whether the data is being used to characterize this site or another. If the
data is collected at the site to be estimated, then the directestimation of the trends is worthwhile,
otherwise probably not. If unexplainable trends are encountered during an exploration and the
results are to be used to characterize another site, then probably a larger sampling domain needs to
be considered.

Assume that the data is collected at the site to be characterized. In such a case, the task is to obtain
estimates ofµX(x

∼
) andσ2

X(x
∼

), both as functions of position. Trends in the variance typically require
significant amounts of data to estimate accurately. The sampling domain is subdivided into smaller
regions within each of which the variance is assumed spatially constant. This allows a ‘block-wise’
estimation of the variance which may then be used to estimatea trend. Thus the estimation of
a non-stationary variance is simply a re-iteration of the stationary variance estimation procedure
discussed earlier. Since often there is insufficient data toallow such a sophisticated analysis, the
variance is usually assumed globally stationary.

Trends in the mean, in the case of stationary variance, can beobtained by least-squares regression
techniques. Here it is assumed that the mean can be describedby a function of the form

µ̂X(x
∼

) =
MX
k=1

akgk(x
∼

) (4.5)

whereak are the unknown coefficients to be solved for, andgk(x
∼

) are pre-specified functions of
spatial position,x

∼
. In that complicated function are often unjustifiable, usually the mean trend is

taken to be linear so that, in one dimension,g1(x) = 1, g2(x) = x andM = 2. In two dimensions,
the corresponding mean function would be bilinear, withg1(x∼ ) = 1, g2(x∼ ) = x1, g3(x∼ ) = x2 and
g4(x∼ ) = x1x2. The coefficientsak may be obtained by solving the so-callednormalequations;

G
≈

TG
≈

a
∼

= G
≈

Ty
∼

(4.6)

wherey
∼

is the vector of observations (the measured values of the soil property in question),a
∼

is the
vector of unknown coefficients in Eq. (4.5) andG

≈

is a matrix made up of the specified functions
gk(x

∼ i) evaluated at each of the observation locations,x
∼ i;

G
≈

=

26666664 g1(x∼ 1) g2(x∼ 1) � � � gM (x
∼1)

g1(x∼ 2) g2(x∼ 2) � � � gM (x
∼2)

.

.

.

.

.

.

.
.

.

.

.

.
g1(x∼n) g2(x∼n) � � � gM (x

∼n)

37777775
Although the matrixG

≈

is of sizen �M , the normal equations boil down to justM equations in
theM unknown coefficients ofa

∼
.
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With this estimate of the mean, the process,X(x
∼

), can be converted into a mean stationary process
X ′(x

∼
) = X(x

∼
) � µ̂X(x

∼
). The deviation or residual processX ′ is now approximately mean zero. If

a plot ofX ′(x
∼

) over space seems to indicate a non-stationary variance, then the varianceσ2
X(x

∼
) can

be estimated by subdividing the sampling domain into small regions as discussed above. Otherwise
an unbiased estimate of the stationary variance is

σ̂2
X =

1
n�M

nX
i=1

�
Xi � µ̂X(x

∼ i)
�2

whereM is the number of terms in Eq. (4.5).

If a non-stationary variance is detected and estimated, an approximately stationary field in both
mean and variance can be produced through the transformation

X ′(x
∼

) =
X(x

∼
)� µ̂X(x

∼
)

σ̂X(x
∼

)

In addition, such a transformation implies thatX ′ has zero mean and unit variance (at least in
approximation).

4.2.4 Estimating the Correlation Structure

An estimator of the correlation structure of a one-dimensional random field will be developed here.
The extension to the multi-dimensional case is only slightly more complicated.

Consider the sequence of random variablesfX1,X2, . . . ,Xng sampled fromX(x) at a sequence
of locations separated by distance∆x. For the following estimator, it is essential that the data be
equispaced. An unbiased estimator for the covariance,B(j∆x) between any two random variables
alongx separated by the distancej∆x, for j = 0,1, . . . , n�M � 1 is given by

B̂(j∆x) =
1

n�M � j

n−jX
i=1

�
Xi � µ̂X(xi)

��
Xi+j � µ̂X(xi+j)

�
whereM is the number of unknowns used to estimateµX(x). The correlation coefficient is then
estimated as

ρ̂X(j∆x) =
B̂(j∆x)
σ̂2

X

whereσ̂2
X = B̂(0) is the estimated variance.

In two dimensions, the estimator for the covariance at lagτ
∼

= fj∆x1, k∆x2g involves a sum over
all data pairs separated by the lagτ

∼
. Similarly in higher dimensions. The normalizing factor

1/(n �M � j) becomes 1/(Nτ
∼

�M) whereNτ
∼

is the total number of data pairs separated byτ
∼

in the data set.
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4.2.5 Example: Statistical Analysis of Permeability Data

Consider a set of permeability measurements made by infiltrometer on 2 ft. by 2 ft. cells extracted

from a rectangular test pad of poorly compacted clay, as shown in Table 4.1. The test pad is of

dimension 16 ft. by 16 ft. and the (x1, x2) coordinates shown on the table correspond to the center

of each 2 ft. square cell. All values are in units of 10−7 cm/sec.

Table 4.1 Permeability data over a 16 foot square clay test pad.

x2 x1 (ft.)

(ft.) 1.0 3.0 5.0 7.0 9.0 11.0 13.0 15.0

1.0 53.69 61.94 82.38 65.49 49.71 17.85 42.83 14.71

3.0 98.42 46.87 109.41 99.40 7.01 16.71 20.70 1.88

5.0 41.81 6.32 20.75 31.51 6.11 26.88 33.71 13.48

7.0 149.19 11.47 0.63 14.88 8.84 73.17 40.83 29.96

9.0 140.93 30.31 1.04 0.92 2.81 34.85 3.31 0.24

11.0 105.74 1.27 10.58 0.21 0.04 0.57 2.92 7.09

13.0 99.05 12.11 0.12 0.97 5.09 6.90 0.65 1.29

15.0 164.42 7.38 13.35 10.88 8.53 2.22 3.26 0.73

A quick review of the data reveals first that it is highly variable with Kmax/Kmin > 4000 and

second that it tends from very high values at the left edge (x1 = 1) to small values asx1 increases.

There also appears to be a similar, but somewhat less pronounced trend in thex2 direction, at least

for larger values ofx1.

The high variability is typical of permeability data, sincea boulder will have permeability ap-

proaching zero, while an airspace will have permeability approaching infinity – soils typically

contain both at some scale. Since permeability is bounded below by zero, a natural distribution to

use in a random model of permeability is the lognormal – this has been found by many researchers

to be a reasonable distribution for permeability. IfK is lognormally distributed, then lnK will

be normally distributed. In fact the parameters of the lognormal distribution are just the mean

and variance of lnK (see Table 2.6). Adopting the lognormal hypothesis, it is appropriate before

proceeding to convert the data listed in Table 4.1 into lnK data, as shown in Table 4.2.

Two cases will be considered in this example;

1) the data is to be used to characterize other ‘similar’ claydeposits. This is the more likely

scenario for this particular sampling program.

2) the site to be characterized is the 16 foot square test area(which may be somewhat hypothetical

since it has been largely removed for laboratory testing).



Probabilistic Methods in Geotechnical Engineering 60

Table 4.2 Log-Permeability data over a 16 foot square clay test pad.

x2 x1 (ft.)

(ft.) 1.0 3.0 5.0 7.0 9.0 11.0 13.0 15.0

1.0 -12.13 -11.99 -11.71 -11.94 -12.21 -13.24 -12.36 -13.43

3.0 -11.53 -12.27 -11.42 -11.52 -14.17 -13.30 -13.09 -15.49

5.0 -12.38 -14.27 -13.09 -12.67 -14.31 -12.83 -12.60 -13.52

7.0 -11.11 -13.68 -16.58 -13.42 -13.94 -11.83 -12.41 -12.72

9.0 -11.17 -12.71 -16.08 -16.20 -15.08 -12.57 -14.92 -17.55

11.0 -11.46 -15.88 -13.76 -17.68 -19.34 -16.68 -15.05 -14.16

13.0 -11.52 -13.62 -18.24 -16.15 -14.49 -14.19 -16.55 -15.86

15.0 -11.02 -14.12 -13.53 -13.73 -13.97 -15.32 -14.94 -16.43

Starting with case (1), any apparent trends in the data are treated as simply part of a longer scale
fluctuation – the field is assumed to be stationary in mean and variance. Using Eqs. (4.1) and (4.4)
the mean and variance are estimated as

µ̂ln K = �13.86

σ̂2
ln K = 3.72

To estimate the correlation structure, a number of assumptions can be made;

a) assume that the clay bed is isotropic, which appears physically reasonable. Hence an isotropic
correlation structure would be adopted which can be estimated by averaging over the lagτ in
any direction. For example, whenτ = 2 ft. the correlation can be estimated by averaging over
all samples separated by 2 ft. in any direction.

b) assume that the principle axes of anisotropy are aligned with thex1 andx2 coordinate axes
and that the correlation function isseparable. Now ρ̂ln K(τ1, τ2) = ρ̂ln K(τ1)ρ̂ln K(τ2) is obtained
by averaging in the two coordinate directions separately and lag vectors not aligned with the
coordinates need not be considered. Because of the reduced number of samples contributing
to each estimate, the estimates themselves will be more variable.

c) assume that the correlation structure is more generally anisotropic. Lags in any direction must
be considered separately and certain directions and lags will have very few data pairs from
which to derive an estimate. This typically requires a largeamount of data.

Assumption (a) is preferred, but (b) will also be examined tojudge the applicability of the first
assumption. In assumption (b), the directional estimatorsare given by

ρ̂ln K(j∆τ1) =
1

σ̂2
ln K

(n2(n1 � j)� 1)

n2X
k=1

n1−jX
i=1

(X ′
ik)(X ′

i+j,k), j = 0,1, . . . , n1 � 1

ρ̂ln K(j∆τ2) =
1

σ̂2
ln K

(n1(n2 � j)� 1)

n1X
k=1

n2−jX
i=1

(X ′
ki)(X

′
k,i+j), j = 0,1, . . . , n2 � 1

whereX ′
ik = lnKik � µ̂ln K is the deviation in lnK about the mean,n1 andn2 are the number of

samples in thex1 andx2 directions respectively, and where∆τ1 = ∆τ2 = 2 ft. in this example.
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The subscripts onX ′ or lnK index first thex1 direction and second thex2 direction. The isotropic
correlation estimator of assumption (a) is obtained using

ρ̂ln K(j∆τ ) =
1

σ̂2
ln K

(n2(n1 � j) + n1(n2 � j)� 1)

(
n2X
k=1

n1−jX
i=1

(X ′
ik)(X ′

i+j,k) +
n1X
k=1

n2−jX
i=1

(X ′
ki)(X

′
k,i+j)

)
,

j = 0,1, . . . ,max(n1, n2)� 1

in which if n1 6= n2, then the (ni � j) appearing in the denominator must be treated specially.
Specifically for anyj > ni, the (ni � j) term is set to zero.

Fig. 4.5 shows the estimated directional and isotropic correlation functions for the lnK data.
Note that at higher lags, the curves become quite erratic. This is typical since they are based on
fewer sample pairs as the lag increases. Also shown on the plot is a fitted exponentially decaying
correlation function. The scale of fluctuation,θ, is estimated to be about 5 ft. in this case by simply
passing the curve through the estimated correlation at lagτ = 2 ft. Note that the estimated scale is
quite sensitive to the mean. For example, if the mean is knownto be -12.0 rather than -13.86, then
the estimated scale using this data jumps to 15 ft. In effect,the estimated scale is quite uncertain; it
is best used to characterize the site at which the data was taken. Unfortunately, significantly better
scale estimators have yet to be developed.
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Figure 4.5 Estimated and fitted correlation function for lnK data.

For case (2), where the data is being used to characterize thesite from which it was sampled,
the task is to estimate the trend in the mean. This can be done in a series of steps starting with
simple functions for the mean (i.e. constant) and progressing to more complicated functions (i.e.
bilinear, biquadratic, etc.) monitoring the residual variance for each assumed form. The form
which accounts for a significant portion of the variance without being overly complex is selected.

Performing a least squares regression with a bilinear mean function on the data in Table 4.2 gives

µ̂ln K(x
∼

) = �11.88� 0.058x1 � 0.102x2 � 0.011x1x2
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with corresponding residual variance of 2.58 (was 3.72 for the constant mean case). If a biquadratic

mean function is considered, the regression yields,

µ̂ln K(x
∼

) =� 12.51 + 0.643x1 + 0.167x2 � 0.285x1x2� 0.0501x2
1 � 0.00604x2

2 + 0.0194x2
1x2 + 0.0131x1x

2
2 � 0.000965x2

1x
2
2

with a residual variance of 2.18. Since there is not much of a reduction in variance using the more

complicated biquadratic function, the bilinear form is selected. For simplicity, only two functional

forms were compared here. In general one might want to consider all the possible combinations of

monomials to select the best form.

Adopting the bilinear mean function, the residuals lnK ′ = lnK � µ̂ln K are shown in Table 4.3.

Table 4.3 Log-Permeability residuals.

x2 x1 (ft.)

(ft.) 1.0 3.0 5.0 7.0 9.0 11.0 13.0 15.0

1.0 -0.077 0.203 0.623 0.533 0.403 -0.487 0.533 -0.397

3.0 0.749 0.192 1.225 1.308 -1.159 -0.106 0.288 -1.929

5.0 0.124 -1.539 -0.133 0.513 -0.900 0.806 1.262 0.569

7.0 1.620 -0.681 -3.311 0.118 -0.132 2.247 1.937 1.896

9.0 1.785 0.558 -2.499 -2.307 -0.874 1.949 -0.088 -2.406

11.0 1.721 -2.343 0.133 -3.432 -4.736 -1.720 0.266 1.512

13.0 1.886 0.185 -4.036 -1.547 0.513 1.212 -0.749 0.340

15.0 2.612 -0.046 0.986 1.229 1.431 0.523 1.346 0.298

Fig. 4.6 illustrates the estimated correlation structure of the residuals. Notice that the fitted scale

of fluctuation has decreased to about 3 ft. This is typical since subtracting the mean tends to

reduce the correlation between residuals. The estimated mean, variance and correlation function

(in particular the scale of fluctuation) can now be used confidently to represent the random field of

log-permeabilities at the site.
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Figure 4.6 Estimated and fitted correlation function for lnK � µ̂ln K data.

4.3 Best Linear Unbiased Estimation

The purpose of Best Linear Unbiased Estimation (BLUE), alsoknown as Kriging, is to provide a
best estimate of the soil properties between known data. Thebasic idea is to estimateX(x

∼
) at any

point using a weighted linear combination of the values ofX at each observation point. Suppose
thatX1,X2, . . . ,Xn are observations of the random field,X(x

∼
), at the pointsx

∼1, x∼ 2, . . . , x∼n. Then
the BLUE ofX(x

∼
) atx

∼
is given by

X̂(x
∼

) =
nX

i=1

βiXi (4.7)

where then unknown weightsβi are to be determined. In the regression analysis performed
previously the goal was to find a global trend for the mean. Here, the goal is to find the best
estimate at a particular point. It seems reasonable that if the pointx

∼
is particularly close to one

of the observations, sayXk, then the weight,βk, associated withXk would be high. However,
if X(x

∼
) andXk are in different (independent) soil layers, for example, then perhapsβk should be

small. Rather than using distance to determine the weights in Eq. (4.7), it is better to use covariance
(or correlation) between the two points since this reflects not only distance but also the effects of
differing geologic units, etc.

If the mean can be expressed as in the regression analysis, Eq. (4.5)

µ̂X(x
∼

) =
MX
k=1

akgk(x
∼

) (4.8)

then the unknown weights can be obtained from the matrix equation

K
≈

β
∼

= M
∼

(4.9)
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whereK
≈

andM
∼

depend on the covariance structure,

K
≈

=

2666666666666666664
C11 C12 � � � C1n g1(x∼ 1) g2(x∼ 1) � � � gM (x

∼ 1)
C21 C22 � � � C2n g1(x∼ 2) g2(x∼ 2) � � � gM (x

∼ 2)
.
.
.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.
Cn1 Cn2 � � � Cnn g1(x∼n) g2(x∼n) � � � gM (x

∼n)
g1(x∼ 1) g1(x∼2) � � � g1(x∼n) 0 0 � � � 0
g2(x∼ 1) g2(x∼2) � � � g2(x∼n) 0 0 � � � 0

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.
gM (x

∼ 1) gM (x
∼2) � � � gM (x

∼n) 0 0 � � � 0

3777777777777777775
in whichCij is the covariance betweenXi andXj and

β
∼

=

8>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>:
β1

β2
.
.
.
βn�η1�η2
.
.
.�ηM

9>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>;
M
∼

=

8>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>:
C1x

C2x

.

.

.
Cnx

g1(x∼ )
g2(x∼ )

.

.

.
gM (x

∼
)

9>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>;
The quantitiesηi are a set of Lagrangian parameters used to solve the varianceminimization
problem subject to non-bias conditions. Beyond allowing for a solution to the above system of
equations, they will be ignored in this simple treatment. The covarianceCix appearing in the RHS
vectorM

∼
is the covariance between theith observation point and the pointx

∼
at which the best

estimate is to be calculated.

Note that the matrixK
≈

is purely a function of the observation point locations and covariances –
thus it can be inverted once and then Eqs. (4.9) and (4.7) usedrepeatedly at different spatial points
to build up the field of best estimates (for each spatial point, the RHS vectorM

∼
changes, as does

the vector of weights,β
∼

).

The Kriging method depends upon two things; 1) knowledge of how the mean varies functionally
with position, i.e. g1, g2, . . . need to be specified, and 2) knowledge of the covariance structure
of the field. Usually, assuming a mean which is either constant (M = 1, g1(x∼ ) = 1, a1 = µ̂X) or
linearly varying is sufficient. The correct order can be determined by

1) plotting the results and visually checking the mean trend, or by

2) performing a regression analysis, or by

3) performing a more complex structural analysis – seeMining Geostatisticsby Journel and
Huijbregts (Academic Press, 1978) for details on this approach.
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The covariance structure can be estimated by the methods discussed in the previous section, if
sufficient data is available, and used directly in Eq. (4.9) to defineK

≈

andM
∼

(with, perhaps some
interpolation for covariances not directly estimated). Inthe absence of sufficient data, a simple
functional form for the covariance function is often assumed. A typical model is one in which the
covariance decays exponentially with separation distanceτij = jx

∼ 1 � x
∼ 2j;

Cij = σ2
X exp

��2jτij j
θ

�
As mentioned previously, the parameterθ is called thescale of fluctuation. Such a model now
requires only the estimation of two parameters,σ2

X andθ, but assumes that the field isisotropic
andstatistically homogeneous. Non-isotropic models are readily available and often appropriate
for soils which display layering.

4.3.1 Estimator Error

Associated with any estimate of a random process derived from a finite number of observations is
an estimator error. This error can be used to assess the accuracy of the estimate. Defining the error
as the difference between the estimate,X̂(x

∼
), and its true (but unknown and random) value,X(x

∼
),

the estimator mean and corresponding error variance are given by

µX̂(x
∼

) = E
�
X̂(x

∼
)
�

= E[X(x
∼

)] = µX(x
∼

)

σ̂2
E = E

��
X̂(x

∼
)�X(x

∼
)
�2
�

= σ2
X + β

∼

T

n
(K
≈ n×nβ

∼ n
� 2M

∼ n)

whereβ
∼ n

andM
∼ n are the firstn elements ofβ

∼

andM
∼

defined in the previous section, andK
≈ n×n

is then � n upper left submatrix ofK
≈

containing the covariances, also defined in the previous
section. Note that̂X(x

∼
) can also be viewed as the conditional mean ofX(x

∼
) at the pointx

∼
. The

conditional variance at the pointx
∼

would then be ˆσ2
E.

4.3.2 Example: Foundation Consolidation Settlement

In the spirit of Example 3 discussed in Section 3.2 of these notes (see Fig. 3.7), consider the esti-
mation of consolidation settlement under a footing at a certain location given that soil samples/tests
have been obtained at 4 neighboring locations. Fig. 4.7 shows a plan view of the footing and sample
locations. The samples and local stratigraphy are used to estimate the soil parametersCc, eo, H,
andpo appearing in the consolidation settlement equation

S = N

�
Cc

1 + eo

�
H log10

�
po + ∆p

po

�
at each of the sample locations. Each of these 4 parameters are then treated as spatially varying
and random between observation points. It is assumed that the estimation error in obtaining
the parameters from the samples is negligible compared to field variability, and so this source
of uncertainty will be ignored. The model error parameter,N , is assumed an ordinary random
variable (not a random field) with mean 1.0 and standard deviation 0.1. The increase in pressure at
mid-depth of the clay layer,∆p depends on the load applied to the footing. As in Section 3.2,we
will again assume that E[∆p] = 0.5 ksf with standard deviation 0.1.
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The task now is to estimate the mean and standard deviation ofCc, eo, H, andpo at the footing
location using the neighboring observations. Table 4.4 lists the soil settlement properties obtained
at each of the 4 sample points.

Table 4.4 Derived soil sample settlement properties.

Sample Cc eo H po

Point (inches) (ksf)

1 0.473 1.42 165 3.90

2 0.328 1.08 159 3.78

3 0.489 1.02 179 3.46

4 0.295 1.24 169 3.74

µ 0.396 1.19 168 3.72

σ2 0.009801 0.03204 70.56 0.03460

30 m

50 m

50 m

Footing

Observation Point

1 2

34

15 m

35 m

20 m

Figure 4.7 Consolidation settlement plan view with sample points.

In Table 4.4, we have assumed that all 4 random fields are stationary, with spatially constant mean
and variance, the limited data not clearly indicating otherwise. In order to obtain a Best Linear
Unbiased Estimate at the footing location, we need to establish a covariance structure for the field.
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Obviously 4 sample points is far too few to yield even a rough approximation of the covariance
between samples, especially in two dimensions. Let us assume that experience with similar sites
and similar materials leads us to estimate a scale of fluctuation of about 60 m using an exponentially
decaying correlation function, that is we assume that the correlation structure is reasonably well
approximated by

ρ(x
∼ i, x∼ j) = exp

�� 2
60
jx
∼ i � x

∼ jj�
In so doing, we are assuming that the clay layer is horizontally isotropic, also a reasonable
assumption. This yields the following correlation matrix between sample points;

ρ
≈

=

26664 1.000 0.189 0.095 0.189
0.189 1.000 0.189 0.095
0.095 0.189 1.000 0.189
0.189 0.095 0.189 1.000

37775
Furthermore, it is reasonable to assume that the same scale of fluctuation applies to all 4 soil
properties. Thus, the covariance matrix associated with the propertyCc between sample points
is just σ2

Cc
ρ
≈

= 0.009801ρ
≈

. Similarly, the covariance matrix associated witheo is its variance
(σ2

eo
= 0.03204) times the correlation matrix, etc.

In the following, we will obtain BLUE estimates from each of the 4 random fields (Cc(x∼ ), eo(x∼ )
independently. Note that this does not imply that the estimates will be independent, since if the
sample properties are themselves correlated, which they most likely are, then the estimates will
also be correlated. It is believed that this is a reasonably good approximation given the level of
available data. If more complicated cross-correlation structures are known to exist, and have been
estimated, the method ofco-Kriging can be applied – this essentially amounts to the use of a
much larger covariance (Kriging) matrix and the consideration of all four fields simultaneously.
Co-Kriging also has the advantage of also ensuring that the error variance is properly minimized.
However, co-Kriging is not implemented here, since the separate Kriging preserves reasonably
well any existing point-wise cross-correlation between the fields and since little is known about the
actual cross-correlation structure.

The Kriging matrix associated with the clay layer thicknessH is then

K
≈ H

=

2666664 70.56 13.33 6.682 13.33 1
13.33 70.56 13.33 6.682 1
6.682 13.33 70.56 13.33 1
13.33 6.682 13.33 70.56 1

1 1 1 1 0

3777775
where, since we assumed stationarity,M = 1 andg1(x∼ ) = 1 in Eq. (4.8). Placing the coordinate
axis origin at sample location 4 gives the footing coordinatesx

∼
= (20,15). Thus, the right hand

side vectorM
∼

is

M
∼ H

=

8>>>>><>>>>>: σ2
Hρ(x∼ 1, x∼ )
σ2

Hρ(x∼ 2, x∼ )
σ2

Hρ(x∼ 3, x∼ )
σ2

Hρ(x∼ 4, x∼ )
1

9>>>>>=>>>>>; =

8>>>>><>>>>>: (70.56)(0.2609)
(70.56)(0.2151)
(70.56)(0.3269)
(70.56)(0.4346)

1

9>>>>>=>>>>>; =

8>>>>><>>>>>: 18.41
15.18
23.07
30.67

1

9>>>>>=>>>>>;
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Solving the matrix equationK
≈ H

β
∼ H

= M
∼ H

gives the following four weights (ignoring the Lagrange
parameter);

β
∼ H

=

8>>><>>>: 0.192
0.150
0.265
0.393

9>>>=>>>;
in which we can see that the samples which are closest to the footing are most heavily weighted
(more specifically, the samples which are most highly correlated with the footing location are the
most heavily weighted), as would be expected.

Since the underlying correlation matrix is identical for all 4 soil properties, the weights will be
identical for all 4 properties, thus the best estimates at the footing are

Ĉc = (0.192)(0.473) + (0.150)(0.328) + (0.265)(0.489) + (0.393)(0.295) = 0.386

êo = (0.192)(1.42) + (0.150)(1.08) + (0.265)(1.02) + (0.393)(1.24) = 1.19

Ĥ = (0.192)(165) + (0.150)(159) + (0.265)(179) + (0.393)(169) = 169

p̂o = (0.192)(3.90) + (0.150)(3.78) + (0.265)(3.46) + (0.393)(3.74) = 3.70

The estimation errors are given by the equation

σ̂2
E = σ2

X + β
∼

T

n
(K
≈

n×nβ
∼ n
� 2M

∼ n)

Since then � n submatrix ofK
≈

is just the correlation matrix times the appropriate variance,
and similarlyM

∼ n is the correlation vector (between samples and footing) times the appropriate
variance, the error can be rewritten

σ̂2
E = σ2

X

�
1 +β

∼

T

n
(ρ
≈

β
∼ n
� 2ρ

∼x
)
�

whereρ
∼x

is the vector of correlation coefficients between the samples and the footing (see the
calculation ofM

∼ H
above). For the Kriging weights and given correlation structure, this yields

σ̂2
E = σ2

X(0.719)

which gives the following individual estimation errors;

σ̂2
Cc

= (0.009801)(0.719) = 0.00705 ! σ̂Cc
= 0.0839

σ̂2
eo

= (0.03204)(0.719) = 0.0230 ! σ̂eo
= 0.152

σ̂2
H = (70.56)(0.719) = 50.7 ! σ̂H = 7.12

σ̂2
po

= (0.03460)(0.719) = 0.0249 ! σ̂po
= 0.158

In summary, then, the variables entering the consolidationsettlement formula have the following
statistics based on the preceding Kriged estimates;
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Variable Mean SD δ

N 1.0 0.1 0.1

Cc 0.386 0.0839 0.217

eo 1.19 0.152 0.128

H 169 7.12 0.042

po 3.70 ksf 0.158 0.043

∆p 0.50 ksf 0.100 0.20

The most significant difference between these results and those shown in Section 3.2, Example 3,
are the reduced standard deviations. This is as expected since incorporation of observations tends
to reduce uncertainty. Now, a first order analysis of the settlement gives

µS = (1.0)

�
0.386

1 + 1.19

�
(169) log10

�
3.7 + 0.5

3.7

�
= 1.64

To estimate the settlement coefficient of variation, a first order analysis is again used as in Section
3.2;

δ2
S =

mX
j=1

�
∂S

∂Xj

µXj

µS

�2

µ

δ2
j =

mX
j=1

S2
j δ

2
j

where the subscriptµ on the derivative implies that it is evaluated at the mean of all random
variables. The variableXj is replaced by each ofN , Cc, etc., in turn. Evaluation of the derivatives
at the mean leads to the following table;

Xj µXj
δj Sj S2

j δ
2
j

N 1.0 0.100 1.0 0.01

Cc 0.386 0.217 1.0 0.0471

eo 1.19 0.128 -0.54 0.0048

H 169 0.042 1.0 0.0018

po 3.70 0.043 -0.94 0.0016

∆p 0.50 0.200 0.94 0.0353

so that

δ2
S =

mX
j=1

S2
j δ

2
j = 0.10057

giving a coefficient of variation for the settlement at the footing of 0.317. This is roughly a 10%
decrease from the result obtain without the benefit of any neighboring observations. Although this
does not seem significant in light of the increased complexity of the above calculations, it needs to
be remembered that the contribution to overall uncertaintycoming fromN and∆p amounts to over
40%. Thus, the coefficient of variationδS will decrease towards it’s minimum (barring improved
information aboutN and/or∆p) of 0.212 as more observations are used and/or observationsare
taken closer to the footing. For example, if a fifth sample were taken midway between the other
4 samples (at the center of Fig. 4.7), then the variance of each estimator decreases by a factor
of 0.46 from the point variance (rather than the factor of 0.719 found above) and the settlement
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c.o.v. becomes 0.285. Note that the reduction in variance can be found prior to actually performing
the sampling since the estimator variance depends only on the covariance structure and the assumed
functional form for the mean. Thus, the Kriging technique can also be used to plan an optimal
sampling scheme – sample points are selected so as to minimize the estimator error.

4.4 Probabilities

Once the random field model has been defined for a site, there are ways of analytically obtaining
probabilities associated with design criteria, such as theprobability of failure. For example, by
assuming a normal or lognormal distribution for the footingsettlement in the previous section, one
can easily estimate the probability that the footing will exceed a certain settlement given it’s mean
and standard deviation. Assuming the footing settlement tobe normally distributed with mean 1.64
inches and a c.o.v. of 0.317 (standard deviation = (0.317)(1.64) = 0.52) then the probability that
the settlement will exceed 2.5 inches is

P[S > 2.5] = 1� Φ

�
2.5� 1.64

0.52

�
= 1� Φ(1.65) = 0.05

4.4.1 Random Field Simulation

Sometimes the system being designed is too complicated to allow the calculation of probabilities
analytically. Fortunately there is a simple, albeit computer intensive, solution; simulate realizations
of the random field and analyze each to produce realizations of the response. From a set of response
realizations, one can build up a picture of the response distribution from which probability estimates
can be derived. This is calledMonte Carlo Simulation(MCS). With computers becoming faster
and faster, MCS is becoming increasingly attractive.

Assume that the mean and covariance structure for the randomfield to be modeled has been
established. Since the mean and covariance completely specifies a jointly normal distribution,
the following discussion will cover only the generation of normally distributed random fields.
Non-normal random fields can often be obtained through a suitable transformation of a normally
distributed field. For example, a lognormally distributed random field can be obtained from

X(x
∼

) = exp
n
µln X(x

∼
) + σln X(x

∼
) �G(x

∼
)
o

whereµln X andσln X are the mean and standard deviation of the normally distributed lnX, possibly
both functions ofx

∼
, andG(x

∼
) is a normally distributed random field with zero mean, unit variance,

and correlation functionρln X.

The simulation of a normally distributed random field startswith the generation of a sequence of
independentstandard normally distributed random variables (zero mean, unit variance). Given two
random variablesuniformly distributed between 0 and 1, denotedUi andUi+1, two independent
standard normalvariates can be produced according to

Zi =
p�2 ln(1� Ui) cos(2πUi+1)

Zi+1 =
p�2 ln(1� Ui) sin(2πUi+1)
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The choice of whether to use (1� Ui) or simplyUi inside the logarithm is arbitrary. However, if
the pseudo-random number generator on your computer has thepossibility of returningUi = 0, the
logarithm function may fail unless (1� Ui) is used. Usually uniform random number generators
on the interval (0,1) exclude one or the other bound. SeeNumerical Recipes in C(or Fortran) by
Presset al., Cambridge University Press, New York, 1992 for some good uniform random number
generators. These are highly recommended since random number generators supplied with some
standard libraries are suspect.

Once a sequence of independent standard normally distributed random variables are available,
there are quite a number of different algorithms all designed to produce a random field. Only the
simplest will be considered here. The random field to be simulated is represented by an points,
x
∼1, x∼ 2, . . . , x∼n and realizations ofX1,X2, . . . ,Xn are desired at each point, with the correct mean
and covariance structure on average. Ifρ

≈

is the correlation matrix associated with these points,
having components

ρij =
Cov

�
Xi,Xj

�
σX(x

∼ i)σX(x
∼ j)

thenρ
≈

can be decomposed into the product of a lower triangular matrix and its transpose,

L
≈

L
≈

T = ρ
≈

This is sometimes called Cholesky decomposition and standard algorithms for its computation exist
(see againNumerical Recipes). It will only fail in the event that one or more of theXi’s are perfectly
correlated. For example, ifXi is perfectly correlated withXj , then the Cholesky decomposition of
ρ
≈

will fail. The solution is to takeXj(x∼ j) = Xi(x∼ i) + µX(x
∼ j) � µX(x

∼ i), and eliminateXj from the
correlation matrix. This simplifies to just takingXj = Xi in the event that the mean is stationary.
If more than one pair of variates are perfectly correlated, one in each pair must be eliminated from
direct consideration in a similar fashion.

Another difficulty with the Cholesky decomposition approach is that it becomes unwieldy and
prone to numerical round-off errors (often leading to failure) when the number of points in the field
becomes large. Oftenn = 500 or so is a practical limit, reducing if the field is highlycorrelated.
In 2-D situations, this limits the field to about 25 by 25 points and about 8 by 8 by 8 in 3-D. For
larger problems, more efficient algorithms are available. See Fenton (1994) for some of the more
common algorithms.

Given the matrixL
≈

, a properly correlated (on average) standard normal randomfield can be obtained
by linearly combining the independent standard normal variates as follows

Gi =
iX

j=1

LijZj, i = 1,2, . . . , n

Finally, the known mean and variance can be reintroduced to yield realizations forXi which, on
average, will show the correct target statistics;

Xi = µX(x
∼ i) + σX(x

∼ i)Gi

Once a realization of the random fieldX has been generated, it can be used as input to a deterministic
analysis. For example,X could be the compression index fieldCc which, coupled with random
field realizations foreo,H, andpo, could be used to compute settlements under an array of footings.
From this computation, the maximum settlement and differential settlement can be readily extracted.
Repeating over an ensemble of realizations would allow the construction of a histogram of, say,
maximum differential settlements from which probability statements could be made.
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4.4.2 Conditional Simulation

The preceding section discusses the simulation of so-callunconditionedrandom fields. In the
event that data is available at the site being simulated,conditionalsimulation should be employed
to ensure that the random field realizations match the data atthe data locations exactly. An
unconditional simulation ignors this additional information and will lead to higher variability in
the response quantities.

Suppose that the random fieldX(x
∼

) has been measured at the pointsx
∼ 1, x∼ 2, . . . , x∼p and is to be

simulated at the pointsx
∼p+1, x∼ p+2, . . . , x∼n. That is, we want to produce realizations ofX(x

∼
) which

exactly match the data atp points and are random at the remainingn�p points. Then the simulation
of the conditioned random field involves the following steps;

1) from the known data, compute best linear unbiased estimates of the field at the unknown points
x
∼p+1, . . . , x∼n. Call this fieldXk(x

∼
). At the known points,Xk is equal to the data.Note: since

this is a simulation, the field mean must be prespecified. Thismeans that the BLUE system of
equations becomes

K
≈ n×nβ

∼ n
= M

∼ n

that is, the Kriging matrix and RHS vectors involve only the covariances, and the estimator
becomes

X̂k(x
∼

) = µX(x
∼

) +
nX

i=1

βi(Xi � µX(x
∼ i))

2) generate an unconditioned realization of the random fieldusing the specified mean, variance,
and correlation structure according to the method presented in the previous subsection. Call
this fieldXu(x

∼
),

3) compute best linear unbiased estimates of the field at the unknown points usingXu(x
∼ 1),Xu(x

∼ 2),
. . . ,Xu(x

∼ p) as the known data. That is, produce a BLUE field from the unconditioned simula-
tion. Call this fieldXs(x∼ ). Again, this estimation uses only the covariances, as in step(1).

4) combine the three fields to produce the conditioned realization,Xc as follows,

Xc(x∼ ) = Xk(x
∼

) + [Xu(x
∼

)�Xs(x∼ )]

Notice that at the known points,Xs = Xu, so that the conditioned field exactly matches the
data. Between the known points, the term [Xu(x

∼
) � Xs(x∼ )] represents a random deviation

which is added to the BLUE estimateXk such that the mean ofXc is Xk with increasing
variance away from the known points.

4.5 Summary

The use of random field models is not without its difficulties.This was particularly evident in the
estimation discussion since random field parameters must often be derived from a single realization
(the site being explored). The interpretation of trends in the data as true trends in the mean or
simply as large scale fluctuations is a question which currently can only be answered by engineering
judgement. The science of estimation in the presence of correlation between samples is not at all
well developed.

As a result, the statistical parameters used to model a random field are generally uncertain and
statements regarding probabilities are equally uncertain. That is, because of the uncertainty in
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estimates of mean properties, statements regarding the probability of failure of a slope, for example,
cannot be regarded as absolute. However, they often yield reasonable approximations based on
a very rational approach to the problem. In addition, probabilities can be used effectively in a
relative sense; the probability of failure of design A is less than that of design B. Since relative
probabilities are less sensitive to changes in the underlying random field parameters they can be
more confidently used in making design choices.
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Appendix A Basic Concepts of Probability and Reliability

FromProbabilistic Methods in Geotechnical Engineering
National Research Council Report, 1995

A.1 Background

An evaluation of the usefulness and role of reliability in geotechnical engineering cannot be made
without a clear understanding of the probability and risk assessment principles and methods that are
used. Accordingly, a brief overview of some basic concepts is presented in this appendix. Although
a text on basic probability and reliability concepts specifically written for geotechnical engineers
is current not available (with the possible exception of Harr, 1977), several texts (Benjamin and
Cornell, 1970; Ang and Tang, 1975, 1984; Harr, 1987) that pertain to civil engineering as a whole
can be referred to for a comprehensive and detailed treatiseof the subject.

A.2 Description of Uncertainties and Probability Assessment

Geotechnical engineers are very familiar with uncertainties. The uncertainty may be in the form of
a lack of information about the subsurface soil profile or a large scatter in the soil test results, or it
may be associated with a substantial deviation of the measured field performance from its predicted
value. When measurements on a given random variable are available, a histogram is often used to
portray the uncertainties associated with the variable. The graph is a plot of the number of observed
values for respective intervals of values of the variable. An example of such a plot is Fig. A.1,
which shows a histogram of the undrained shear strength measured from laboratory testing of a
set of soil samples collected from a site. This plot shows that the measured soil strengths for this
soil range from 0.8 to 1.6 ksf. The measured strengths are roughly symmetrical about the central
value of 1.2 ksf. Fig. A.2 shows a histogram of the ratio, N, ofthe measured-versus-predicted pile
capacity from a set of pile load tests.1 The actual capacity of a test pile ranges from as low as 40
percent of the value predicted to as great as twice that predicted value. The shape of the histogram
is skewed toward higher values of the ratio N, which implies that exceptionally large ratios may be
observed. Besides drawing the histogram, statistical measures can be calculated from a given set
of observed data to gain a better understanding of the distribution of the variable.

A common statistic, thesample mean, is mathematically defined as the average of the observed
values. It is a measure of the central tendency of the random variable. For the above case of
pile capacity, if the prediction model does not contain any systematic bias, the mean value of
the observed ratios will be approximately 1.0. Any deviation of the computed mean ofN from
1.0 indicates that bias may be present in the model, which could mean either consistent over
prediction or underprediction by the model. Thesample variance, which is defined as the average
of the squared deviation from the sample mean for all observed values, describes the amount of
dispersion of the variable from the central value. Because the variance has a dimension that is a

1The pile tests were all in clay, and their capacities were predicted according to the procedures in the 16th edition
of Recommended Practice 2A of the American Petroleum Institute (1986). To assure consistency, the soil strength
for all the test piles are based on unconfined compressive strengths on pushed samples or equivalent.
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Figure A.1 An example histogram of soil strength data.

square of the dimension of the mean, thesample standard deviation, which is the square root of
the variance, may be used to measure the average dispersion of the variable from its mean value.
An even more convenient measure of the dispersion is given bythe coefficient of variation (c.o.v.),
which is the ratio of standard deviation to the mean and is a dimensionless quantity. Typical
c.o.v. values for shear strength of soil are 20 to 40 percent,whereas the value for the soil density is
smaller, around 5 percent.

In the above examples, the values observed represent only one set of observations. Another set of
observations would not likely give exactly the same individual values. Thus, the histogram, as well
as the sample statistics defined above, is subject to variation between sets of observations. This
is particularly true of the number of observations in each set is small. In fact, the measured data,
such as those cited above, only serve to provide some information on the nature of the uncertainties
associated with the variable under consideration. Besidesthe directly measured data at a given site,
an engineer often has a strong feeling about which values a geotechnical variable will likely have
on the basis of judgement and prior experience. Indeed, thissubjective information is most useful
in augmenting a small data base or (in the absence of measureddata) in determining a probability
model for the geotechnical variable.

A probability density function(PDF) may be introduced to model the relative likelihood of a
random variable. The PDF describes the relative likelihoodthat the variable will have a certain
value within the range of potential values. In a case where the engineer believes that a given set
of measured data does not represent a set of realistic samplevalues of the engineering variable
and no other information is available, a PDF can be fitted overthe frequency diagram, which
is a modified histogram whose ordinate has been scales, so that the area under the histogram is
unity. For instance, anormal distributionis a common probability distribution model used to fit
a symmetrical bell-shaped histogram. If the engineer adopts a normal distribution to model the
undrained shear strength in Fig. A.1, the parameters of the normal distribution, namelyµ andσ,
can be estimated by the sample mean and sample standard deviation, respectively.

In most situations, however, the choice of the PDF will be based on engineering judgement instead
of a histogram, because either the sample size of the observations is small, or the engineer believes
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Figure A.2 Histogram of pile-test data. (The pile tests are all in clay,and their axial capac-
ities are predicted according to the 16th edition of American Petroleum Institute,
Recommended Practice 2A, 1986. Source: Tang, 1988).

that the values measured are not representative of the values of the pertinent variable, as is discussed
further in the next section. In a broad sense, the PDF may be used to express the overall feeling
of the engineer on the basis of all the evidence that is available. The evidence may include results
of various types of tests, geological history, geotechnical performance in similar soils, and the
engineer’s intuition. Themean valueof the PDF represents the engineer’s best estimate of the
random variable without the addition of conservative assumptions, and thestandard deviation, or
c.o.v., of the PDF represents the engineer’s assessment of the uncertainty. A convenient probability
distribution type (e.g. normal or logonormal) may be selected, and calibrated with those mean
values and standard deviations that are consistent with theengineer’s judgement, to yield the
judgmentally based PDF of the variable. If an engineer is only confident with the maximum and
minimum values of a variable, a uniform distribution over the range may be used as a conservative
PDF, whereas a triangular distribution can model approximately the engineer’s perception of the
relative likelihood over the given range of values. The PDF associated with an engineer’s belief can
change with time, especially when there is new evidence thatis contrary to the engineer’s previous
opinion. The subject of updating probability with additional information will be discussed in a
later section.

Once the PDF of a random variable is established, it can be used to calculate the probability of an
event associated with a range of values of the variable. For instance, suppose that the undrained
shear strength of the soil at a site is modeled by a normal distribution with parametersµ andσ equal
to 1.2 and 0.17 ksf, respectively. The probability that the undrained shear strength, for example,
for the next test specimen from the site, will be less than 1.03 ksf is given byZ 1.03

−∞

fX(x) dx = Φ

�
1.03� 1.2

0.17

�
= Φ(�1.0) = 1� Φ(1.0) = 1� 0.841 = 0.159 (A.1)

wherefX(x) is the PDF of the random undrained shear strength, andΦ(x) is the probability
of a standard normal variate (i.e., with mean 0 and standard deviation 1.0) less thanx. Some
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typical values of the function are presented in Table 2.7; for negative values ofx, the function
Φ(x) = 1� Φ(�x).

The advantage of the probability model is that with appropriate judgement of the engineer the
PDF extends beyond the information portrayed by the observed data. The PDF incorporates the
engineer’s judgement on the applicability of the data for the specific site, as well as any other
pertinent factors. Caution has to be exercised, however, toensure the appropriateness of the PDF in
representing the engineer’s state of belief. Judgement of the engineer should also play a significant
role in the appropriate use of the probability estimated from the chosen PDF.

An engineer may also estimate the likelihood of a given eventdirectly, that is without going
through the PDF, based on judgmental information. Vick (1992) suggested a workable procedure
for encoding probabilities from engineers. As described inthe approach adopted here to model
uncertainties, a judgmental probability or probability distribution should be more valuable than
one estimated strictly from observed data. It quantifies theengineer’s opinion based on his or her
experience and interpretation of the available information. By using these judgmental probabilities,
engineers can be assured that judgment, the most important element in a reliability evaluation of
geotechnical performance will not be ignored but instead will be enhanced.

A.3 From Soil Specimen to In Situ Property

The random variable in the first example (see Fig. A.1) is the undrained shear strength of soil.
However, the measured data represent only the undrained shear strengths of discrete soil specimens,
which are determined using a given test procedure. This is not necessarily the strength that governs
the performance at the site. In fact, the pertinent soil property controlling the performance of
a foundation system often involves a much larger volume of soil. for instance, the average
shear strength along a potential slip surface will control the failure of a slope, and the average
compressibility of a volume of soil beneath a footing will control the settlement of the footing.
In these two cases, the soil properties from each of the many points that constitute the domain of
influence will contribute to the performance. Hence a domain-average property is needed instead
of the property of discrete soil specimens. Sometimes, extreme low or high values of the soil
property within a small local region may also govern system performance. Examples include the
initiation of progressive failure in a slope by a local zone of weal material and piping failure in
an earth dam that is induced by a small zone of highly permeable material. Even in these cases,
the local zone involved is often much larger than the size of atypical soil specimen. In any event,
the pertinent soil property is the average soil property over an appropriate spatial domain, large or
small; this soil property is referred to as the "spatial average property". To evaluate correctly the
site performance, the probabilistic description (e.g. mean value and c.o.v.) of the spatial average
property must be determined.

Two factors are involved here. First, there is a size effect.The law of averaging would imply
that the average soil property over a given volume or area will exhibit a smaller scatter than the
properties at individual locations. Hence, in many circumstances there is a reduction in variability
that depends on the size of the domain to be averaged, although in some circumstances, increasing
the size of this domain may actually increase the variability. In addition, the correlational structure
of the soil property will also affect the amount of reductionin variability. To study the effect
of correlation, observe first that soil samples collected adjacent to each other are likely to have
properties that are similar to each other compared with the relationships between those collected at
large distances apart. Also, soil specimens tested by the same device will likely show less scatter
in the measured values than if they were tested by different devices in separate laboratories. The
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degree of correlation as a function of separation distance between soil samples depends on the
specific soil type and deposit characteristics and on the property considered. Nevertheless, the
more erratic the variation (i.e., less correlated) of the soil property with distance and the larger the
soil domain considered, the larger the reduction in the variability of the average property will be.
this phenomenon is a result of the increasing likelihood that unusually high property values at some
points will be balanced by low values at other points; therefore, the average property is less likely
to take on exceptionally high or low values.

Second, the in situ soil property at incipient failure is notnecessarily duplicated by the sampling
and testing procedure performed on the soil specimen. Some of the causes of variance are sample
disturbance, different stress conditions, and macrofeatures that may not be well represented by a
small specimen. Each of these causes can yield test results that are consistently lower or higher
than the in situ value; for example, a fissured clay might havea lower in situ strength than that
measured in small samples. Hence, a bias may exist that needsto be corrected and incorporated
into the overall uncertainty evaluation.

To account for the effect of the two factors described in the last paragraph, Tang (1984) proposed
the following expressions for relating the mean and c.o.v. of the average soil property in situ to
those of the tested soil specimens:

Ā = N̄x̄ (A.2)

c.o.v. = δ =
p

∆2 + ∆2
o + γ(D)δ2

t (A.3)

where the mean soil property estimated from laboratory or field tests, ¯x, is modified by the mean
bias,N̄ , of the respective test to yield the mean average soil property, Ā. For the first c.o.v. on the
right side of Eq. (A.3),∆ denotes the uncertainty in the bias caused by the discrepancy between
specimen and in situ property. The value ofN̄ and∆ can be assessed subjectively by the engineer
after the factors causing the discrepancy are identified andevaluated. The second c.o.v.∆o, denotes
the uncertainty contribution from taking a limited number of samples, which can be expressed as a
function of the sample size. The third term is the product of the square ofδt; the c.o.v. of property
values from tests on specimens; andγ(D), a variance reduction factor depending on the size of the
averaging domainD and the spatial correlation characteristics of the soil properties (Vanmarcke,
1984). Uncertainty contributed by the first two components is often termed "systematic" in contrast
to the last component, which is termed "random". Systematicuncertainties impose the same effect
(or discrepancy) on each soil element throughout the spatial domain considered and hence are
not subject to the averaging effect, unlike the spatial variability in the last term. It should be
emphasized that the c.o.v. values reported in the literature are often estimated from measured test
values for small soil specimens, which generally are not representative of the in situ soil properties
governing geotechnical performance. Therefore, these c.o.v. values are essentially those denoted
by δt in Eq. (A.3). They generally cannot be used directly in reliability analysis; they need to be
modified by factors to account for the spatial averaging reduction and the hidden systematic bias
and error associated with the given type of test procedure for determining that property. As shown
in Fig. A.3 for a case where the test strength has a conservative bias, the probabilities calculated
for an event, for example, undrained shear strength less than 1.0 ksf, can be substantially different
using the probability distribution based on the test specimen statistics (curve B) rather than using
that based on the average strength along a slip surface (curve A).

The discussion in this section considers a soil medium consisting of a single material type. In
problems such as instability of rock slopes that is induced by the most unfavourably oriented joint,
specific localized properties will affect the performance instead of the average property. In this
case, undesirable extreme conditions are more likely to occur as the volume of the soil or rock
increases. Another case is the phenomenon of progressive failure initiated at some local weak
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Figure A.3 Discrepancy between distribution of in situ property and those of specimen property.

zone. The larger the domain of soil considered, the more adverse it will become. If the soil stratum
consists of other materials whose properties are drastically different from those of the main soil
material, it will require a different model and analysis procedure.

Example

The average density of a 10-m-thick soil layer is estimated based on the following infor-
mation:

1) Nine soil samples taken at widely scattered locations have been tested for their den-
sities, which yielded a mean of 1,800 kg/m3 and a standard deviation of 200 kg/m3.
Assume random test error is negligible compared with spatial variability.

2) Assume prefect correlation among soil densities in the horizontal plane and an expo-
nential correlation model with parameter 0.3 m in the vertical direction.

3) From long experience, the densities measured at this laboratory exhibit some discrep-
ancy from those in situ. this discrepancy could range between 0.9 and 1.06; that is, the
true in situ density may be from 90 to 106 percent of the laboratory-measured values.

The c.o.v.,δt, denoting the inherent spatial variability of density between specimens is
200/1,800 or 0.111. For the given exponential correlation model and the averaging domain
of 10 m, the factorγ(D) is estimated to be 0.058 (Tang, 1984). The error due to limited
samples is given by 0.111/

p
9 or 0.037 by assuming that the nine sample values are

statistically independent. Lastly, the error due to systematic bias can be evaluated by
assuming a uniform distribution between 0.9 and 1.06 for thecorrection factorN . which
yields a mean value,̄N , of 0.98 and a c.o.v.,∆, of 0.047. Incorporating all of these
component statistics into Eq. (A.2) and Eq. (A.3), the mean and overall c.o.v. of the spatial
average density are

Ā = (0.98)(1800) = 1764 kg/m3 (A.4)

δ =
p

0.0472 + 0.0372 + 0.058(0.111)2 = 0.066 (A.5)
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A.4 From Field-Test to Field Performance

Geotechnical engineers often have collected data on field-test performance and compared these data
with those predicted according to a geotechnical model. Thefield tests may involve actual full-size
foundation systems or simply scaled-down field tests or evenlaboratory model tests. An example
has been shown in Fig. A.2 for the case of axial pile capacity based on a large number of pile tests.
In principle, the probability distribution of this ratio, especially that established on the basis of high-
quality field tests, can be used to determine the uncertaintyassociated with a given performance
prediction model, which in turn may be used to estimate the probability of failure of the given
geotechnical system. However, the applicability of this procedure depends on the performance of
the geotechnical system under consideration being representative of the population of the field-test
systems used in assessing the model bias and c.o.v. If there is a discrepancy, additional factors
are required to modify the predicted performance. The bias and c.o.v. associated with each of
the factors can be estimated from reported research studiesor can be based on judgement of the
engineer. An example of the use of pile test data in Fig. A.2 for evaluating the in situ capacity of
an offshore pile is given below.

Example

A large database from test piles was compiled by Olson and Dennis (1982) from which the
discrepancies between the measured capacity and that predicted by a given pile-capacity
prediction model were analyzed (Tang, 1988). Large scatterin the ratio of predicted-
versus-measured capacity was observed, as shown in Fig. A.2for piles in clay. To apply
this result to the evaluation of the axial capacity of an offshore pile, corrections are needed
to account for the effects of factors such as

1) loading rate, because the strain rate in most pile tests isa fraction of 1 mm/minute,
whereas that during a severe storm could be much larger, on the order of 200 mm/second
or 10,000 mm/minute;

2) pile compressibility, because offshore piles are generally much longer than short piles
tested on land;

3) consolidation level, because the time at which the critical storm hits could be years
after the installation of the piles, whereas test piles normally are tested within months
of installation; so the soil surrounding the test piles may have been subject to a different
degree of consolidation relative to the actual pile; and

4) the specific sampling/testing procedure used for soil strength determination at the given
site, which may be in contrast to that used for determining the statistics of the model
bias and c.o.v. The bias and c.o.v. associated with each of these factors have been
assessed and then combines through a fist-order probabilitymodel to yield the overall
bias and c.o.v. of the in situ pile capacity (Tang, 1989) as

Q̄ = N̄1 N̄2 � � � N̄mQp (A.6)

δQ =
q
δ2

1 + δ2
2 + � � � + δ2

m (A.7)

whereN̄i andδi denote the respective bias (i.e., mean and c.o.v.) of the individual
correction factor for theith effect. The values of̄Ni andδi depend on the dimension
of the pile, the sampling/testing procedure for soil strength determination, and the
environmental conditions at the proposed site (Tang, 1988). For a 300-ft pile in
a typical site at the Gulf of Mexico, with soil strengths determined by unconfined
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compression tests on driven samples, the overall mean bias is estimated to be 2.15,
and overall c.o.v. is about 0.432. This implies that the pilecapacity is expected to
be 2.15 times the predicted value. On the other hand, if unconfined, unconsolidated
strength tests on pushed samples were used for determining the soil strengths, the
corresponding overall bias and c.o.v. would be 0.865 and 0.197, respectively.

A.5 Factor of Safety

Satisfactory performance of a geotechnical system often depends on its capacity relative to the
applied load. For a pile foundation system, a pile fails by plunging if the axial capacity of the
pile provided by the surrounding soil is less than the axial load from the superstructure. Slope
failure occurs if the total sliding resistance along a potential slip surface is less than the driving
force caused by the soil weight and other loads. Hence, in thesimplest case, a safety factor can be
defined as the ratio of the available resistance,R, to the applied load,L, or

F = R/L (A.8)

such that failure is given by the eventfF < 1g. For the case where the applied load is known, or if
an engineer would like to assess the safety subject to a prescribed design load,L is a constant and
F can be alternatively defined as the factor by which the available resistance must be divided to
cause failure. The definition of safety factor in Eq. (A.8) should not be confused with the traditional
design safety factor, which is treated deterministically as the ratio of the nominal resistance to the
nominal load. Further discussion of the traditional designsafety factor is presented at the end of
this subsection.

Since the available resistance and available load are each subject to uncertainties, they should be
modeled as random variables; thus,F , in turn, will also be a random variable. The relationship
between the probability of failure and the probability distributions ofR andL is shown in Fig. A.4a.
The resistance can take on any value covered by the extent of the PDF ofR, that is,fR(r), whereas
the load can take on any value covered by the extent of the PDF of L, that is,fL(ℓ). The region under
the overlapping portion of the two PDF curves denotes the zone where the resistance may be less
than the load. Although the area of overlap is not the probability of failure, the relative size of the
overlapping region may be used as a rough comparison of the relative likelihoods of failure. As the
mean resistance increases (Fig. A.4b), likelihood of the failure decreases as expected. A decrease
in the likelihood of failure can also be achieved by reducingthe dispersion or uncertainty in the
resistance (Fig. A.4c). Mathematically, the probability of failure is calculated from the convolution
integral as follows

P[failure] =
Z ∞

0

�Z ℓ

9
fR(r) dr

�
fL(ℓ) dℓ (A.9)

where the probability of the resistance being less than a given load valueℓ, which is given by the
bracket within the integral, is weighted by the PDF of the load over all possible values ofℓ. A
reliability index,β, has been commonly used in the reliability literature to denote the reliability
level without the explicit determination of the probability of failure. For the safety factor,F , as
defined in Eq. (A.8),β is approximately the ratio of the natural logarithm of the meanF (which is
approximately equal to the ratio of mean resistance over mean load) to the c.o.v. of F;2 a large value

2This definition ofβ is not the standard definition ofβ associated with the first order reliability method, which
is presented later in this section, but it serves to demonstrate the relationship between the mean safety factor,
uncertainties of load and resistance, and the probability of failure without using a more elaborate formulation.
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of β represents a higher reliability or smaller probability of failure. The reliability level associated
with a reliability indexβ is approximately given by the functionΦ(β), evaluated atβ, from Table
2.7. The probability of failure is simply 1� Φ(β). As shown in Figs. A.5a through A.5c, the
distribution of the safety factor corresponding to the cases of Figs. A.4a through A.4c may be used
to determine the respective probabilities of failure, namely the probability thatF is less than 1.
The value ofβ is larger for cases b and c relative to that for case a. By reducing the uncertainty of
the resistance, the spread of the safety factor distribution decreases as shown in Fig. A.5c, yielding
a smaller probability of failure. Moreover, as the mean safety factor increases, the PDF shifts to
the right (Fig. A.5b) and the probability of failure decreases.

The conventional factors of safety commonly used by engineers are based on nominal values of
resistance and load. They are not mean safety factors. The conventional safety factor depends on the
physical model, the method of calculation, and most importantly, on the choice of soil parameters.
Usually there is a lack of consensus on these choices, and a large range of levels of conservatism
on the choice of soil strength and methods of analysis is common. The uncertainty level associated
with the resistance and load is not explicitly considered. Consequently, inconsistency is likely to
exist among engineers and between applications for the sameengineer. The same conventional
safety factor can be associated with a large range of reliability level and thus is not a consistent
measure of safety, as demonstrated in the following example. The use of a reliability index,β,
such as that introduced earlier in this section, can providesignificant improvement over the use of
the traditional design safety factor in measuring the relative safety between the designs.

Example

In dam design, structural engineers designing concrete gravity dams useF = 3.0 for
foundation design with respect to sliding failure, while geotechnical engineers designing
earth dams useF = 1.5 for similar foundation design. Does this mean that concrete gravity
dams are twice as safe as earth dams in regard to sliding? The answer is probably "no".
The reasons are (1) geotechnical engineers tend to be more conservative in selecting soil
strength parameters, and (2) the value ofF is generally not directly related to the likelihood
of failure. Reliability methods offer a tool to compare the relative safety between the two
design methods. Consider a simple case in which a dam is 600 ftwide at the base with a
height,h, in ft to be designed. The average undrained strength of the soil supporting the
dam is 1,000 psf based on unconfined-compression tests on pushed samples. Suppose the
dam is designed with respect to the sliding mode at the base toresist a lateral hydrostatic
pressure of 0.5� 62.5� h2 psf.

For a concrete dam, the design height of the dam can be obtained by equating the ratio of
nominal resistance to nominal load, that is, (1000�600)/(0.5�62.5�h2) to 3.0 yielding
a height of 80 ft. Similarly, for an earth dam, if the geotechnical engineer adopted a
conservative undrained soil strength equal to two-thirds of the average value measured, the
design height can be obtained by equating the ratio (0.67�1000�600)/(0.5�62.5�h2)
to 1.5, yielding a height of 87 ft.

To evaluate the reliability of each of these two designs withrespect to the sliding-failure
mode, assume for simplicity that the in situ undrained soil strength is 0.9 of that measured
and that its uncertainty is represented by a c.o.v. of 30 percent. The mean safety factor
for the concrete dam is estimated by (0.9� 1000� 600)/(0.5� 62.5� 802), that is, 2.7.
Hence its reliability index is (ln 2.7)/(0.3) = 3.31. Similarly, the reliability index for the
earth dam is estimated as 2.75, which is substantially more than half of the value ofβ
for the concrete dam. The probability of sliding failure forthe concrete dam is 0.00047,
compared with 0.00347 for the earth dam. In other words, for the values assumed in this
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example, the earth dam is about seven times more likely to slide than a concrete dam. On
the other hand, if the geotechnical engineer had adopted a very conservative undrained soil
strength equal to 40 percent of the average value measured, the design height of the earth
dam would be 71 ft and the corresponding probability of sliding failure of the earth dam
would be 0.00002. In spite of its smaller factor of safety, the earth dam would be only
about one-twentieth as likely to fail as the concrete dam forthis case.

The simple expression ofR/L used in defining the factor of safety may not be obvious at times. for
instance, in the stability analysis of a slope, the weight ofthe soil at the toe can act as counterweight
to resist the driving moment caused by the main mass of the soil slope. This contribution can
be either treated as additional resistance or reduced load.Depending on how this contribution is
treated, it may introduce a discrepancy in the evaluation ofthe reliability index according to the
approximate procedure presented earlier. To overcome thisproblem, a generalized safety factor,
F , may be used to define the satisfactory performance of a geotechnical system. The safety factor
can be represented by a general performance function

F = g(X1,X2, . . . ,Xm) (A.10)

where theXi’s are the component variables. In fact, this formulation ismore general, because the
resistance is usually a function of soil properties and geometric variables. Moreover, performance
pertaining to settlement or leakage rate may be more conveniently expressed as a function of the
loads, hydraulic head, soil, and other geometric variablesinstead of the ratioR/L.

In principle, for given PDF of each of the component variables in the performance function
in Eq. (A.10), the probability thatfF < 1g can be calculated. However, the calculation can
be mathematically cumbersome, involving many levels of analytical or numerical integration.
Moreover, the engineer may be able to estimate perhaps only the mean value and the c.o.v. (but not
the PDF) of most of the component variables due to a general lack of data. As a result, one may
need to resort to approximate procedures for evaluating theprobability of failure.

Consider the first case where the PDF of each component variable is satisfactorily prescribed by
the engineer. The mathematical problem of performing the multiple integration can be avoided by
using Monte Carlo simulation. By this procedure, values of the component variables are randomly
generated according the their respective PDFs; these values are then used to calculate the value of
the safety factor. By repeating this process many times, theprobability of failure can be estimated
by the proportion of times that the safety factor is less thanone. The estimate is reasonably
accurate only if the number of simulations is very large; also, the smaller the probability of failure,
the larger the number of simulations that will be required. When the PDF of some (or even all)
of the component variables are not prescribed but their meanvalues and c.o.v.’s are available, the
first-order reliability method may be used to determine the reliability index and the corresponding
probability of failure approximately. The method is based on the truncation of the Taylor series
expansion of the safety factor beyond the first-order term. Therefore, the method will yield a good
approximation if the functiong(�) is nearly linear or if the uncertainties of the component variables
are small, for example if the c.o.v. is less than 15 percent. Otherwise, the results may be inaccurate
or difficult to obtain. The second-order reliability methodhas been successful in improving the
accuracy of the results in some cases. Essentially, this method retains one more term in the Taylor
series expansion; hence, it can approximate some nonlinearg(�) better. However, the method
generally requires additional information about the component variables beyond their mean and
c.o.v. values, for instance their probability distribution type. for more details of the first-order
and second-order reliability method procedures, refer to Ang and Tang (1984) and Madsen et al.
(1986).
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A simpler use of the first-order method is to relate the c.o.v.of the safety factor to the c.o.v.’s of
the component variables. For instance, the c.o.v. of the safety factor in Eq. (A.10) is approximately
equal to

δF =

sX
i

S2
i δ

2
i (A.11)

whereδi is the c.o.v. of each variableXi, andSi is the sensitivity factor denoting the percent
change in safety factor for each percent of change in the value of Xi. The sensitivity factor
may be determined analytically or numerically by taking thepartial derivative of the function
g(�) with respect to each variable. Both the sensitivity factorand the c.o.v. of the component
variable are important in determining the contribution of agiven variable to the c.o.v. ofF . The
benefit of an uncertainty analysis, such as that in Eq. (A.11), is that the relative contribution of
uncertainties from each variable, including the model error, can be compared on a consistent basis.
This information can help the allocation of future researchefforts or additional site explorations,
because one can identify the variables that have the most effect on (or contribution to) the overall
c.o.v. of the safety factor. Reduction of the c.o.v. in thesevariables will likely yield the largest
improvement in the reliability of the current system as wellas similar systems in the future. Finally,
for a geotechnical system whose performance involves complex numerical procedures in lieu of
an analytical function, the point estimate method proposedby Rosenblueth (1975) can be used
efficiently to obtain approximate estimates of the mean and c.o.v. of the safety factor.

A.6 Reliability-Based Design

The discussion thus far has focused on evaluating the reliability of a geotechnical system when the
uncertainties of the pertinent variables are defined. In a design situation, one would be interested
in choosing a design that will achieve a desired or prescribed level of safety. As shown earlier
in Figs. A.4 and A.5, a geotechnical engineer can increase the reliability by increasing the mean
resistance, by reducing the c.o.v. of the resistance, or by decreasing the loads. To obtain a higher
ratio of mean resistance to the design load, one can deliberately adopt a low or conservative value
as the design resistance to be checked against the designed load. This in turn will yield a mean
resistance that has a high value relative to the design load.for instance, the design resistance may be
a fraction of the mean resistance, which can be obtained by introducing a resistance factorφ (smaller
than one) to be multiplied by the mean resistance. By applying the first-order reliability method,
one can determine the appropriate value of the resistance factor from the following equation

φi = 1� α∗
i β δi (A.12)

which shows that the resistance factorφi depends on the uncertainty level of theith variable (given
by c.o.v.δi), the desired level of reliability (given byβ), and a coefficientα∗

i that measures the
sensitivity of theith variable relative to the other component variables. Withthis approach, the
more uncertain variables (i.e., those with largeδi or the more important variables (i.e., those with
largeα∗

i ) will have relatively smaller resistance factorsφi.

Alternatively, the design resistance can be obtained by dividing the mean resistance by a factorγ
(larger than one). The relationship between the two factorsis simplyγ = 1/φ. Eurocode No. 7,
Geotechnics, prefers to useγ as the resistance factor.

In determining the resistance factors for geotechnical design in the proposed design code based on
Load and Resistance Factor Design procedures, a value ofβ should be used that is about the same
as the averageβ associated with the current design. In other words, it is implicitly assumed that
the average reliability level of the current designed is found to be acceptable and desirable.
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A.7 Multiple Modes of Failure

Safety of a geotechnical system may involve its satisfactory performance with respect to several
model of failure. For instance, a retaining wall could fail by overturning, sliding, or inadequate
bearing capacity. Realistically, each of the failure modescould happen, reducing failure of the
system. The probability of foundation failure will generally increase with the number of potential
model. Pertinent questions include: "Which mode is critical, or most likely to occur?" and "How
much additional risk is contributed by the noncritical failure modes?" Probabilistic analysis can
provide answers to these questions by evaluating the probability of failure of each mode and can
further calculate the probability that at least one mode will fail (i.e., system failure). For example,
in the case of a foundation subject to two modes of failure, the probability of system failure is given
by the probability of the union of the two failure eventsE1 andE2 namely

P[E1 [ E2] = P[E1] + P[E2] � P[E1 \ E2] (A.13)

which is the sum of the individual failure probabilities after subtracting the probability that both
modes occur. The last term in Eq. (A.13) will be simply the product of P[E1] and P[E2] if the two
failure modes are statistically independent or unrelated.It is recognized that the consequences,
such as physical damages, of these failure modes are not necessarily the same. Hence, to assess the
potential losses or damages in addition to the overall probability, one should assess the probability
of individual failure modes, weigh each by the respective loss, and combine each contribution
to determine the overall expected loss. On the other hand, the failure of a geotechnical system
may sometimes require the failure of a number of component events together. For instance, in the
example of dam design in karst terrain, the event of failure is the uncontrolled reservoir release,
which requires the occurrence of the following five events: (1) existence of a foundation sinkhole;
(2) collapse of sinkhole; (3) dike fill cracks; (4) piping, and (5) dike breaching. The probability
of the failure event in this case is the product of the five component probabilities, which is much
smaller than any of the individual component probabilities.

Consider next the case of a geotechnical system consisting of several components. for instance,
the foundation of an offshore platform may consist of many similar piles. for a given direction of
wave loading, the pile subjected to the largest load (definedas the critical pile) may not necessarily
be the first to fail; in fact, each of the piles could be the firstto fail. Again, one would be interested
in how much additional risk is contributed by the noncritical piles toward initial failure of the pile
system. Fortunately, the failure of the first pile in this case is not likely to lead to collapse of
the platform system. It may require the failure of several more piles before the pile system fails
completely. A pertinent question is "What is the additionalreserve implicit in the pile system
beyond the failure of the first pile?" Probabilistic methodscan be used to evaluate the relative
likelihood of various failure-path scenarios. Moreover, these methods can provide a measure of
the redundancy accounting for the combined effect of theexpectedreserve capacity as well as
the uncertaintiesin the system. For example, a redundancy factor can be definedas the ratio of
probability of initial failure to the probability of complete system failure. In other words, if there
is only a small likelihood of system failure given that a component has already failed, or if system
failure is very unlikely compared with initial failure, theredundancy factor will assume a large
value as expected.

The importance of system consideration in reliability evaluation cannot be understated. In the case
of slopes, sliding can occur along one of the many slip surfaces. For a long tunnel system, collapse
also can occur at any section. Because most of the reliability analysis is based on the critical
slip surface or the critical cross section of the tunnel, procedures are needed to extrapolate these
critical component probabilities to those of the entire geotechnical system. Probabilistic methods
can provide the necessary analytical framework.
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A.8 Updating of Information

Geotechnical engineers traditionally have used the observational method to help them deal with
uncertainties in site conditions or performance behaviour. The engineer will begin with a few
hypotheses about the site conditions, and field observations are then gathered to pinpoint the
correct hypothesis. This procedure can be formalized by applying probability theory. Whenever
there is additional information about the site, be it from a site exploration program for a new site,
measurements from nondestructive diagnostic tests for an existing infrastructure, or observations
during an early phase of construction, Bayesian probability procedures provide a logical basis for
revising the engineer’s judgement of the site characteristics. Conceptually, the updated probability
of a given hypothesis,H1, based on observation,E, is determined from Bayes’ theorem as

P′′[H1] = kL[E jH1]P
′[H1] (A.14)

where P′[H1] may represent the estimated probability of Hypothesis 1 prior to the observation;
L[E jH1], commonly referred to as the likelihood function, is the likelihood of Hypothesis 1
producing the observation, andk is a normalizing constant such that the sum of the updated
probabilities of all potential hypotheses will be 1.0. Essentially, the likelihood function represents
information from the observation; it is used to modify the prior judgemental probabilities to obtain
the updated probabilities. Bayes’ theorem thus furnishes asystematic means of quantifying relative
likelihood of the respective conceptual models in light of the observations and the respective
reliability associated with each observation scheme. These probability values can be used to
discriminate between contending models; they also can be used to update the performance reliability
of a proposed geotechnical system. More importantly, by explicitly considering the relative
reliability of respective observation schemes and relative likelihood of the conceptual models
before and after the observations, the usefulness of each observation scheme in improving the
overall system performance can be compared beforehand. This will facilitate the selection of what
to measure or observe. Waste-remediation decisions, whichincreasingly involve geotechnical
engineers, can benefit greatly from the above-described probabilistic observational method; this is
also true for many other geotechnical applications, ranging from dam safety to repair/maintenance
decisions concerning deteriorating infrastructures.

Hachich and Vanmarcke (1983) demonstrated an application of Bayesian methods to update the
relative likelihood of two hypotheses of the drainage conditions of a dam based on piezometer
measurements. The method was used by Tang et al. (1994) to update the coefficient of compression
of waste material based on a set of settlement plates installed at a landfill site. These authors also
showed how the Bayesian updating procedure could be incorporated in a probabilistic observational
method to facilitate decisions associated with a landfill cover design. The following simple example
demonstrates the essence of the Bayesian updating procedure:

Example

Leakage of contaminated material is suspected from a given landfill. Monitoring wells
are proposed to verify if leakage has occurred. The locations to two wells are shown in
Fig. A.6. For simplicity, suppose that if leakage has occurred, the engineer estimates that
the probability that it will be observed by Well A is 80 percent, whereas well B is 90
percent likely to detect the leakage.

Assuming that neither well will erroneously register any contamination if there is no
leakage from the landfill. Before any of these wells is installed, the engineer believes that
there is a 70 percent chance that the leakage has happened. Consider first the case that
well A has been installed and no contaminants have been observed. Clearly, the engineer’s
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Figure A.6 Locations of monitoring wells for potential leakage of contaminants from a
landfill.

belief that leakage has occurred will decrease. With this observation, Bayes’ theorem
yields

P
�
L j Ā� =

P
�
Ā jL�P[L]

P
�
Ā jL�P[L] + P

�
Ā j L̄�P

�
L̄
� =

0.2� 0.7
0.2� 0.7 + 1� 0.3

= 0.318

whereL denotes the event of leakage,L̄ denotes the event of no leakage,A denotes the
event of well A detecting contamination,̄A denotes the event of well A not detecting
contamination, and P[L] is the engineer’s estimate of leakage probability. In probability
theory, P

�
L j Ā� represents theconditional probability, namely the probability of leakage

given that well A did not detect contaminants. Although the observation from well A
seems to support the hypothesis that leakage has not occurred, the hypothesis cannot be
fully substantiated because of the imperfect detectability of well A and also because of the
engineer’s prior judgment. By considering these factors, the engineer would now believe
that there is only a 31.8 percent chance that leakage has occurred.

Suppose well B also has been installed, and it also fails to detect any contamination.
By applying Bayes’ theorem again, the probability of leakage based on the combined
observations that both wells did not detect contamination is

P
�
L j Ā \ B̄

�
=

P
�
Ā \ B̄ jL�P[L]

P
�
Ā \ B̄ jL�P[L] + P

�
Ā \ B̄ j L̄�P

�
L̄
�

=
0.2� 0.1� 0.7

0.2� 0.1� 0.7 + 1� 1� 0.3
= 0.045 (A.15)

In the above calculation, the detectabilities between the wells have been assumed indepen-
dent for simplicity. Hence, P

�
Ā \ B̄ jL� is simply the product of P

�
Ā jL� and P

�
B̄ jL�.

The results show that the observations from the two monitoring wells apparently imply that
there is practically no likelihood of a leak. However, because of the imperfect reliability
of the wells in diagnosing the leakage event, there is still aprobability, through very small,
that leakage has indeed happened.
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A.9 Uncertainty in Mapping of Material Types

Uncertainty in mapping arises when it is necessary to infer the type of soil material that exists at
unobserved points from data obtained at points of observation. An example is the inference of the
soil profile from borehole information during the characterization phase of a site. The question
is, "What is the probability of finding a specific material type at a point, given that the material
has been found or not found at another point or points?" The probability can be evaluated with the
application of Bayesian methods, given a geological model of the spatial distribution of the material
type. Wu et al. (1989) presented contour maps showing the probability of encountering clay at
a given point in a soil stratum based on borehole samples and cone penetration records collected
at a North Sea site. In fact, Bayes’ theorem has been used extensively in conjunction with site
characterization (e.g., Baecher, 1972; Wu and Wong, 1981).For instance, the unexpected presence
of geologic anomalies, such as pockets of weak material in asstiff soil stratum or sand lenses
in an otherwise impermeable clay stratum, can cause geotechnical failures. Even if a given site
exploration program has not encountered such geologic anomaly, the experience of the engineer
with the geology of the region may suggest that it could stillby present at the site. In this case, the
engineer’s judgment can be combined with the level of site exploration efforts spent (e.g., number
of borings) by means of the Bayesian procedure to estimate the likelihood of anomaly presence
and the probability distribution of its size and location (Halim and Tang, 1993). The effects of
these potential geologic anomalies then can be incorporated in the reliability evaluation of the
geotechnical system.

A.10 Decision Under Uncertainty

Very often, engineers- or more appropriately, their clients-have to decide between alternatives that
comprise different levels of expenditure and different probabilities of success. To rank a set of
design alternatives, the potential risk associated with a given alternative should be considered, as
well as the capital cost of the alternative. A decision tree,such as that shown in Fig. A.7 for a
landslide mitigation decision at a given site, can be used. The procedure identifies first the available
alternatives of action and the possible outcomes, or sequences of outcome events associated with
each alternative. Then the respective consequences or costs for each scenario or path can be
assessed. The probability of each branch of outcome can be determined either from probabilistic
models or by the engineer’s judgement based on the availableinformation. The probability of a
path is simply the product of the respective probabilities.The expected cost of each alternative
is the summation of the path probability multiplied by the path consequence over all outcome
scenarios for that alternative. The alternative with the least expected cost is considered optimal if
the commonly used expected value criteria is adopted for thedecision. In this example, the optimal
alternative for landslide mitigation at the site is to install a drainage system.

When the input probabilities and costs to the above decisionanalysis are only crude estimates,
a sensitivity analysis should be performed to check if the optimal alternative will change within
the estimated range of values for each probability or cost (see, e.g., Vick and Bromwell, 1989;
Massmann et al., 1991).
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Figure A.7 Decision tree for landslide mitigation.
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