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Foreword

Uncertainty is a fact of life in geotechnical and geoenvinemtal engineering practice. Nature
in its complexity offers soil profiles often very differentom those assumed in analysis and
design; loads and environmental conditions likewise defyeate prediction; and limited sampling,
measurement errors and shortcomings of analysis procefiluteer complicate the engineer’s task.
Probabilistic methods, complementing conventional esesy provide the means for quantifying
and communicating degrees of uncertainty, evaluating dedaisition strategies, and assessing
hazard mitigation measures. The methods range from pridiatbsite characterization, which
involves quantifying the variability and heterogeneitystfatigraphy and material properties, to
risk-based decision analysis, which provides a frameworkdentifying the kinds and degrees
of risk involved in a project, and the consequences showdufie” occur, and evaluating the
effectiveness of alternative actions (in site explorataesign, construction, or monitoring) aimed
at controlling or reducing risks.

These lecture notes for the Workshop on Probabilistic Meshio Geotechnical Engineering present
basic concepts of probabilistic modeling, along with maxgreples of how they can be used to
deal with uncertainties inherent in site characterizatind geotechnical performance prediction,
safety assessment and monitoring. The notes progresgthimoereasingly complex methodology,

starting with the basics of event and fault trees, througglsiand multiple random variables, to

fundamentals of random fields and geostatistics. Among ppécations considered: rock slope

maintenance, clay barrier containment, proof testinglepand predicting differential settlement.
Appended to the notes are some excerpts, rich with refeseficen the 1995 National Research
Council Report on Probabilistic Methods in GeotechnicajiBaering.

The workshop notes were prepared by the individual lecsyfnofessors T.H. Wu, Robert Gilbert,
Wilson Tang and Gordon Fenton, all members of the ASCE-Gé&t$aind Reliability Committee.
Although efforts were made to obtain coherence and conyiraficoverage, it is expected that
the notes will benefit from further editing based on the elgmee gained at the workshop and
attendees’ and readers’ comments, and can subsequentlyasethe basis for similar committee-
sponsored educational and professional activities. Mhagiks, on behalf of the Committee, to
the contributors and to the workshop participants.

Erik H. Vanmarcke
Chair, Safety and Reliability Committee,
Geotechnical Engineering Division, ASCE

Logan, Utah
July, 1997
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Chapter 1

Events, Event and Fault Trees, Bayes’ Theorem

by Tien H. Wu

1.1 Definitions

Events and Probabilities

Events are outcomes, or combinations of outcomes, arisomg &n ‘experiment’. ‘Experiment’ is
used here in a general sense; an example is whether a sltsperfaot. One possible outcome of
this experiment, or event, is failure of the slope. A randa@ng is one whose occurrence is not
known with certainty but can only be associated with a prdiwbhat the event will occur. An
example is the probability that the slope will fail. Events generally denoted using capital letters,
for example failure will be denotel and non-failure by its compleme#t. The probability that
an eventt” will occur is denoted by PF].

Example 1: Failure of a rock slope

Consider several maintenance activitigs, for arock slope. Example events are that a maintenance
activity is effective,F, or ineffective,E. In either caseF or E, there is a probability that the
slope will fail, which is also an event, denoted By The consequence of failur€;, is another
example of an event. Some possible consequences are danmageadiation costg{; in dollars),
service disruption(, in days), etc. Each consequence is a random event with aciatesb
probability. For example the probabilities th@ = 3 days or that”; > $10Q 000 are written
P[C, = 3] and P[Cl > $100Q OOO], respectively. Probabilities are numbers between 0 andH wi
larger likelihoods of occurrence being closer to 1.

Combination of events

The conditional eventd | B, is the event thatl occurs given that everf® has occurred. As an
example, the event of slope failutg, given a maintenance activity is effectivé, is written F' | E.
Intuitively, we should be better able to estimate the prdlglof event £, if we are given some
condition, such as that the maintenance activity is effectiThe intersection of events, written
A N B, means that boti and B occur, while the union of events, writteh U B, means that
eitherA or B or both occur. An example of intersection, also called josdurrence, is that a slope
fails and the cost’, = 3 days. An example of union is the cdst = $5000, orC, = 3 days, or
both.

Event Tree

An event tree is a graphical description of all possible sghent events following an initial event.
Fig. 1.1 shows an event tree for rock slope failure. Eachdiraf the tree is associated with
an event. Maintenance activity 1 is the initial event; it ither effective ) or ineffective ).

An effective maintenance activity is expected to reduceptiobability of failure of the slope but

4
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cannot eliminate entirely the possibility of failure. Thtise branch representing the event that the
maintenance activity was effective, has two sub-branches representing faildfggr non-failure
(F) with associated probabilities. The failure eveht, has a set of possible consequences,
each with an associated probability. The tree can be usest&ssa either the overall probability of
failure or the probabilities of the consequence, which isroexpressed as a dollar cost.

Note that each event, or branch in the event tree, is conditmn the sequence of events leading up
to that branch. Fig. 1.1 shows the conditions leading up taadh of the tree. The probabilities
are therefore conditional probabilities. The evéharising from maintenance activity/, can be
explicitly written ast' | M, . Similarly, the probability of the consequen€g, shown in the upper
right branch, is FECl >c|My N EN F] which is the probability that the coét, is greater than
some specified amountgiven that maintenance activity/; was employed, that it was effective,
but that failure occurred.

Each branch of the tree can lead to any number of possibleegubst events; Fig. 1.1 shows
only a small subset of events leading from mitigation meadudy. One advantage of the event
tree is that it forces the careful identification of all pddsievents leading to failure and/or
serviceability problems. Once the tree has been consttuctee can proceed to evaluate the
conditional probability of each event (branch).

Ci, P[G >¢c|M EF]

F, P[F|M E]

Mo E, P[E|M]

Cz, PLG =n[M EF]

F, 1-P[F|M ,E]

E, 1-P[E|M ]

Figure 1.1 Example eventtree

Fault Tree

Where the causes, or events, that could lead to failure anplex, a fault tree may be constructed to
identify and describe the various events and their reldbdailure. A fault tree is a decomposition
of the top event, such as failure, into a combination of sehesz A simplified example is given in
Fig. 1.2. The top event, slope failure, could result fromekrall or a wedge slide; this is shown
by the symbol (+). Assume that a wedge slide could occur drilyere is a high pore pressure
along a weak plane. Then both a weak plandhigh pore pressure must occur and this is shown
by the symbol {). If high pore pressure would occur when there is heavy adlioir when the
drains are ineffective, then the subevents are connectad by
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Slope Failure

Rock Fall Wedge Slide
Weak Plane High Pore Pressure
Heavy Rainfall Ineffective Drainage

Figure 1.2 Example fault tree

1.2 Fundamental Relations

When events are considered in combination, there are sam@esformulae that allow us to
compute probabilities;

P[A N Bl =P[A|B]-P[B] =P[B|A] - P[A] (1.1)
P[A U B] =P[A4] +P[B] — P[4 N B] (1.2)
The probability of an event, 1], lies between 0 and 1,
0<P[4] <1 (13)
while the probability of a certain event)], is

P[] =P[A U A] =1 (14)

If all possible caused3;, of an event, which may be slope failure, are identified aegtobabilities
of failure given each cause are determined, they can be cmmhising thelotal Probability
Theorento give

P[A] =P[A|By| P[By] +P[A|B,| P[By] +--- +P[A| B,] P[B,] (1.5)
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which gives the probability of the event in question by udimg probabilities that each ‘causB;
occurs. The eventB; are mutually exclusive and collectively exhaustive.

Example 1(continued). The above relations can be used to evaluabapiidgies of combination

of events in the event tree shown in Fig. 1.1. If one were @sted in the probability of failure
given that the maintenance activity; was undertaken, then one could combine the conditional
probability of failure arising from all branches frofiy;

P[F| M =P[F|E n My|P[E| M| +P[F|E N My|P[E|M;]
=P[F|E N M| P[E|M] +P[F|J§ N M) (1 P[E|M])(L6)

where the branches leading from evéhare similar to those leading from evefit Likewise, the
overall probability of failure for uncertain maintenanagiaties is obtained by a summation of all
the M;’s;

P[F]1 =Y P[F|M]P[M] (1.7)

=1
Suppose that the following probabilities have been esanhat
- the probability that maintenance activity; is effective is {E | M;] = 0.7,

- the probability of failure given that maintenance activit/; was used and is effective is
P[F|E n M] =01,
- the probability of failure given that maintenance activit/; was used and is not effective is
P[F|E n M| =10,
then the probability of failure givens, is taken from Eq. (1.6),

P[F|M,] = (0.1)(0.7) + (LO)(1 - 0.7) =037

Furthermore, if the probability that the c@st > cgivenfailureis P[Ol >c|F N Ml] = 0.2while

the probability that the cost; > cgiven that the system does not fail i$(l§’l >c<c] F N Ml] =
0.0, for some value, then the probability that the coSt > ¢ given that maintenance activityf;
was employed is

P[Ol> C|M1] = P[Ol > C|F N M]_] P[F|M1] +P[Ol > C‘_F_7 N Ml] P[F_|M1]
=(0.2)(0.37) + (00)(1—- 0.37) = 0074

1.3 Random Variables

Random variables are variables whose values are not knotimaosrtainty. A probability is
associated with the event that a random variable will havgengralue. Consider first the case of
a discrete random variable, which takes values from a dscet of possibilities. For example,
the number of slope failures can be represented by the ravdoiable N. The eventV = 3
corresponds to the event that there are 3 slope failuresa3s$wiated set of probabilities is called
the probability mass functio@pmf), py(n) = P[N =n],n=0,1,2,...

If the random variable is continuous, probabilities can lkeewdd from a continuous function
called theprobability density functioigpdf), denotedf (z). Unlike themassfunction, thedensity
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function is not in itself a probability — it must be multiptidy a length measure before becoming a
probability, hence the use of the watdnsity Thus, for continuous random variables, probabilities
are associated with intervals. The probability that thetioolous random variabl& lies between

r andz +dz is fy(z)dx. An example is that the shear strength of a soil lies betw@ezn@ 100
kPa. Note that the probability that a sample has strengtttig@8.00. . . kPa is vanishingly small.
Sincef(z) generally varies with:, the probability thatX lies betweer: andb must be obtained
as a sum of probabilities;

b
Pla< X <] = / fx(x)dx

In Example 1, the remediation coét;, in dollars is treated as a continuous random variable evhil
the delay cost,, in days is treated as a discrete random variable.

Methods for establishing pmf and pdf from data are describeskection 2.4.3. When sufficient
data are not available, subjective probability based oggutent may be used. An example is the
probability that a slope will fail in a certain mode. To esdit@ the annual probability of failure
in mode 1, one might count the annual number failures in moithatlhave occurred over a large
number of similar rock slopes over a year and divide this nemily the total number of rock
slopes considered. This would lead to an estimate of th@@g}(n), whereF; denotes a mode 1
failure. Unfortunately, this requires records of failumsmany similar slopes. Such records are
often not available, as in the present example. AlternBtivieenough information is available on
the properties of the rock mass and the loads acting on it,ttreefailure probability PF;] can be
estimated as described in Chapter 2. When the requiredmafioon is not available, it is necessary
to estimate the probabilities using engineering judgerbased on experience and observation in
the field.

Subjective probability plays an important role in engimegibecause it provides a rational proce-
dure for incorporating the engineer’s experience and jodkge into the design process. It is an
expression of the ‘degree of belief’, or, according to ded&#r{1970), “... having obtained the
information that some events have occurred, what are wdeshtd say about ... events not yet
known.” Formal methods for encoding subjective probapdgite available (e.g. Hamptaet al,
1973, Morris, 1974, Spetzler and Stael von Holstein, 1975).

Example 2: Subjective Probability

Subjective probability was used in a project to choose th@mpmn maintenance activities by
Roberds (1991). The following are examples from Roberdgepa Fig. 1.3a shows the pmf,
Py, (0| Mo) = P[Ng, =n| Mp], that represents the subjective probability of number infifes in
mode 1 on a specific slope for a given period if no maintenanfg (vere implemented. Mode
1 denotes isolated rock falls. Estimatespaf, (n | M) were also made for modes 2, 3, etc.,
which are small individual wedge slides, large individuadge slides, etc. Fig 1.3b shows the
pdf, fz,(e| M), which represents the subjective probability densityhef effectivenessf’;, of
the maintenance activity/,, in reducing the number of failures in mode 1/, denotes scaling
and F; is expressed as the reduction, as a fraction, of the numifarlofes from the case of no
maintenance activityVy, | M,. Estimates of (e | M;) for the effectiveness of other maintenance
activities, where aré/, = isolated rock bolts)/; = rock bolts with mesh and shotcrete, etc.

Fig. 1.3c shows the subjective probabilify,(c| F1 N M,) of the consequend€; given a failure

in mode 1 with no maintenance activity.; denotes remediation cost in dollars. Estimates of
fe, (c| F; N Mo) were also made for other costs,, for exampleC;, = service disruption in days,
C3 = number of injuries, etc.
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P[Ng, [Mo] fe (e M)
0.4 —
02
|
Ne | M E,|M
0 1 255 610 11-20 I Mo 0 1 1l My
()) (b)
fe(clR.My)
‘ ‘ ‘ C, ($1000)
1 2

(€)
Figure 1.3 Subjective probabilities

1.4 Decisions under Uncertainty

A very important application of probability analysis is tea¢uate and compare different design or
maintenance options. Engineering decisions are usualignmethe face of some uncertainty, since
future events, such as the magnitude of a potential earklegoiaintensity of a future rainstorm,
cannot be predicted with certainty. In Example 1, the nunabéailures on the different slopes
and the effectiveness of the different maintenance aietsvdre all uncertain and are described by
probabilities. Consequently, the outcome of any designantanance option cannot be predicted
with certainty. Use of probability methods in decision nmakallows the various uncertainties and
their effects to be accounted for in a systematic mannerefxample, in Fig. 1.1, the consequences
C,, of any maintenance activity/;, are given as probability distributions. The decision onchhi
maintenance activity to adopt can be based on the most ldglyomes, or the expected value of
the consequences that follow from the different mainteaaptions. Expected value denotes the
mean value of the pdf of the consequence. When the eXérdenote options in a decision-making
process, the tree is called a decision tree.
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Example 3: Maintenance Strategy for Rock Slopes

Consider now maintenance activitied,, for rock slopes with?;, j = 1,2, ... possible modes of
failure and associated consequencCgsall of which will be random variables. For each possible
failure mode there may be several possible consequencélssaated in Fig. 1.4.

Ci,, PIG>¢ |F M ]

Mo
Fi,P[R M ]
C,
M,
Fo
Action Cs
M, Fs

Figure 1.4 Event tree for rock slope maintenance activities

For a given maintenance activity, the probabilities assged with the consequence cost) can
be determined by summing, over all failure modes, the cagigdility of each mode, weighted by
the probability of occurrence of that mode; using Eq. (1.5),

P[Cy>c|M;] =) P[C1>c|F; n M| P[F;| M (1.8)
J

where it is assumed that a rock slope can fail in only one moddime, i.e. modes are disjoint or
mutually exclusive. If a slope can fail in more than one moda ame then the probabilities of
the different joint occurrences must be assessed. For dgaiha slope can fail in modes 1, 2, or
both, then the possible joint occurrences are the combimati events:A, = F};, N F, (mode 1
alone, A, = ;1 N F, (mode 2along, andA,, = F; N F, (both modes). These constitute distinct
and disjoint events in Eg. (1.8). In this case, if all otherd®e® are disjoint, the cost probability
would be calculated as

P[Cy>c| M| =P[Cy>c|Ar N M| P[AL| M,]
+P[01>C|A2 N Mz] P[Az‘MZ]
+P[Cy > c| A1z N M| P[Agp| M)
+> P[Cy>c|F; n M| P[F;| M (1.9)
j=3

In general, all theconditionsappearing in the sum on the right hand side must be disjoitit an
collectively exhaustive, according to the Total Prob&piliheorem.

Once the probability distribution of the implementatiorstoof each maintenance activity has
been obtained, the expected cost can be computed (seerS2dti8) and compared with expected
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costs of other maintenance activities, including no actidp. Then decisions can be made after a
comparison of the expected costs.

Problems involving real slopes may be more complicatedtifiasimplified examples given above.
A portion of the event tree for the rock slope problem desatiby Roberds (1991) is shown in
Fig. 1.5. In this case it was necessary to estimate the nuaiilsérpe failures and multiply this by
the consequence of one failure. For example, the conseguéncor failures in mode 1, given
maintenance activity/, is

01|F1 N Mlz{NF1|M1}{Ol|F1 N Ml} (110)
The number of failures given maintenance activityNl, | A/;, was obtained by applying the

effectiveness of M, to Np, | My. The consequencé;;, of M, for all failure modes is obtained
by summation

C1| My = {Np | Mi}{Cy|F; N My} (1.11)
J
Cy. PIGIE M]
Mo
F PN, [M]
C2
M 1
I:2
Cs
M, Fs

Figure 1.5 Event tree for rock slope maintenance strategies (afteeRish1991)

This was done for all consequences and all maintenancetestivExamples of the pmf oV,
and the pdf’s ofF andC are shown in Fig. 1.2. Because of the complicated pdf’s, thbability
distributions of consequences were obtained by Monte Ganhwlation. The results are given
in Table 1.1, which gives the implementation codis,the consequences§;, | M;, and the total
equivalent costU | M; of each maintenance activity/;. The total equivalent cost is the result
of combining the different types of consequences. The edgn costs show that maintenance
activity M3, rock bolts with mesh and shotcrete has the lowest expeqgtadadent cost and should
be chosen. Further considerations on the choice of the em@nte activity are described in the
paper. Roberds also shows that this method can be extendédhe slopes in a given stretch of
roadway.

For more details on the event tree approach to risk assesameprobabilistic design optimiza-
tion, the interested reader should consult Ang and Tang4(198 498-509), Roberds (1991), or
Vanmarcke (1974 and 1989).
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Table 1.1 Implementation costs, consequences, and total equivadstt for alternative preven-
tative maintenance activities (from Roberds, 1991)

Costs & Preventative Maintenance Activities
Consq. My M, M> M3 My Ms Mg M
I; min 0 1 5 20 100 50 10 10
($1000) mode 0 2 10 50 200 100 25 15
max 0 5 50 100 500 150 50 20
Cy| M; 5% 0 0 0 0 0 0 0 0
($1000) mean 25 14 19 7 5 14 21 12
95% 66 54 64 37 29 54 59 35
Cy | M; 5% 0 0 0 0 0 0 0 0
(days) mean 4.7 2.7 3.7 1.3 0.9 2.0 4.2 2.4
95% 14 10 13 7.9 5.9 8.1 12 7.6
Cz| M; 5% 0 0 0 0 0 0 0 0

(person) mean 2.3 11 1.8 0.5 0.4 1.3 2.3 0.6
95% 7.0 4.4 6.1 2.8 2.8 5.3 7.0 2.3

Cy| M; 5% 0 0 0 0 0 0 0 0
($million) mean 2.7 0.9 1.6 0.5 0.3 11 2.0 2.0
95% 8.9 4.4 6.1 2.7 2.3 4.8 7.2 6.5

U{M,} 5% 0 0 0 0 | 02 | 01 0 0
($million) | mean | 31 | 1.1 | 19 | 06 | 07 | 14 | 23 | 22
9%5% | 99 | 50 | 70 | 32 | 30 | 55 | 7.9 | 6.8

Notes: 1) Implementation costs are in terms of trianguld&méh - most likely or mode - max),
with insignificant correlation.
2) Consequences and total equivalent costs are in terms oféd§gected value - 95%,
and are correlated (both among consequences and amongesjtiv

1.5 Bayes’ Theorem and Updating

Bayes’ theorem allows the updating of probabilities givddigonal information or observations.

For example, if the everf is observed, then the updated probability that the edemtcurs given

thatZ occurred is

Pzl A]P[A]
P[Z]

We often say that FFA \ Z} is the updated, goosterior, probability of the eventl. The probability
before obtaining data, P[A], is called theprior probability.

Bayes’ Theorem provides a formal approach to the introdactif new information to update
probabilities and combining different types of informatjoncluding judgement. In applications,
EqQ. (1.12) is usually written as

P[A|Z] = (1.12)

P'[0=06,[Z] =KP[Z|0=06,]P[6=86] (1.13)
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for discrete random variables, whefds the state of nature,'[® = 4,] and P[0 = 6,| Z] are

the prior and posterior probabilities, respectiveb{,ﬂ?@ = 62} is the likelihood of getting the
observation or dat& given the state of nature #5, and K is a normalization constant.

For continuous random variables, Eq. (1.12) becomes

f10) =k L©) f'(0) (1.14)

where f'(6) and f”(0) are the prior and posterior probabilities, respectively) is the likelihood
function, andk is a normalization constant. The uncertain state of natuserepresented by a
parameter of the pmf or pdf that describes the random variatdier consideration.

Example 4:

Returning to the number of slope failures in Example 2, asstirat the subjective probability of
number of failuresp,(n), in Fig. 1.3a, which is also the prior probability, can bpresented by a
Poisson distribution (see Section 2.4.2, Table 2.5) witleamrate of occurrence of= 1/year and
avariance of 1. Here; is the parametetin Eq. (1.14) that represents the uncertain state of nature.
Now consider the case in which observations were made faaeaywl 1 failure occurred. This data
point is insufficient for deriving the distributign, (7). Nevertheless, itis a valuable addition to the
subjective probability and is used to obtain a posteriobphility. Calculations can be simplified

if L(v) andf'(v) have certain forms that allow close-form solutions to bawted forf”(v) (Ang
and Tang, 1975, pp 351-354). Using the method of conjugatelitions,” is assumed to have

a Gamma distribution with prior parametefs= 1 andk’ = 1. Following the examples in Ang and
Tang, we obtain” = 2 andk” = 2. This gives a mean value of = 1/year and Vafv] = 0.5.
Note that the posterior mean rate remains the same becauségshrvations gave the same rate.
However, the posterior variance ofis 0.5 which reflects a reduction in uncertainty due to the
observation. The posterior distributigfi(~) can be used to derive a posterior distributigi{n)
(see Benjamin and Cornell, 1970, pp 632-635), which can bd tesrevise the implementation
costs of the maintenance activities. For other examplesatfgbilistic updating, see Tang, 1971,
and Wuet al.,, 1987.



Chapter 2

Basic Random Variables

by Robert B. Gilbert

2.1 Introduction

In the last chapter, you learned how to work with events ardr thssociated probabilities of
occurrence. In this chapter, we will introduce a tool thatssful for evaluating the probability of
an event: the random variable. First, we will provide graphand numerical methods to represent,
understand and quantify variability. Next, we will prestrd random variable as a theoretical tool
for modeling variability. Finally, we will demonstrate haandom variable models can be used in
design by introducing the reliability-based design apphoa

2.2 Graphical Analysis of Variability

Variability often leads to uncertainty. We do not know whreg tinit weight of a soil is at a particular
location unless we have measured it at that location. Thasi@inty arises because the unit weight
varies from point to point in the soil. For example, unit waigneasurements from a boring are
presented in Table 2.1. This boring was drilled offshorehim Gulf of Mexico at the location of
an oil production platform. The soil consists of a normalhysolidated clay over the length of the
boring. The unit weight varies with depth, and ranges froma®525 pcf.

In this section, we will present five graphical methods foalgming variability: histograms,
frequency plots, frequency density plots, cumulative tiestcy plots and scatter plots.

2.2.1 Histograms

A histogram is obtained by dividing the data range into barsj then counting the number of
values in each bin. The unit weight data are divided into #wade intervals from 90 to 130 pcf

in Table 2.2. For example, there are zero values between ®@@4ampcf (Table 2.1), two values
between 94 and 98 pcf, etc. A bar-chart plot of the number ofimences in each interval is called
a histogram The histogram for unit weight is shown on Fig. 2.1.

The histogram conveys important information about valigtin the data set. It shows the range
of the data, the most frequently occurring values, and theusatrof scatter about the middle values
in the set.

There are several issues to consider in determining the euafbntervals for a histogram. First,
the number of intervals should depend on the number of datdspd\s the number of data points
increases, the number of intervals should also increasmn8ethe number of intervals can affect

14
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Table 2.1 Total Unit Weight Data from Offshore Boring
Sorted Values

Total Unit @—fix)?  (x—fix)® Total Unit
Number Depth (ft)  Weighty (pcf) (pcfy (pcf)® Depth (ft)  Weight (pcf)
1 0.5 105 7.2 -19.4 172.0 95
2 1.0 119 128.0 1447.7 7.5 96
3 1.5 117 86.7 807.6 5.0 99
4 5.0 99 75.5 -655.7 22.0 99
5 6.5 101 44.7 -299.1 45.0 99
6 7.5 96 136.6 -1596.5 102.0 99
7 16.5 114 39.8 251.5 19.0 100
8 19.0 100 59.1 -454.3 27.5 100
9 22.0 99 75.5 -655.7 375 100
10 25.0 102 323 -184.0 50.0 100
11 27.5 100 59.1 -454.3 81.5 100
12 31.0 101 44.7 -299.1 121.5 100
13 34.5 101 44.7 -299.1 6.5 101
14 375 100 59.1 -454.3 31.0 101
15 40.0 101 44.7 -299.1 34.5 101
16 45.0 99 75.5 -655.7 40.0 101
17 50.0 100 59.1 -454.3 62.0 101
18 60.5 103 22.0 -103.0 122.0 101
19 62.0 101 44.7 -299.1 132.0 101
20 715 106 2.8 -4.8 25.0 102
21 72.0 109 1.7 2.3 91.5 102
22 81.5 100 59.1 -454.3 112.0 102
23 82.0 104 13.6 -50.1 152.5 102
24 91.5 102 32.3 -184.0 60.5 103
25 101.5 106 2.8 -4.8 82.0 104
26 102.0 99 75.5 -655.7 142.5 104
27 112.0 102 32.3 -184.0 322.0 104
28 121.5 100 59.1 -454.3 0.5 105
29 122.0 101 44.7 -299.1 162.0 105
30 132.0 101 44.7 -299.1 715 106
31 142.5 104 13.6 -50.1 101.5 106
32 152.5 102 32.3 -184.0 272.0 106
33 162.0 105 7.2 -19.4 201.5 107
34 172.0 95 161.0 -2042.3 281.5 108
35 191.5 116 69.1 574.4 72.0 109
36 201.5 107 0.5 -0.3 251.5 109
37 211.5 112 18.6 80.2 271.5 109
38 241.5 114 39.8 251.5 261.8 110
39 251.5 109 1.7 2.3 292.0 111
40 261.8 110 5.3 12.4 2115 112
41 271.5 109 1.7 2.3 311.5 112
42 272.0 106 2.8 -4.8 341.5 112
43 281.5 108 0.1 0.0 411.5 112
44 292.0 111 11.0 36.3 432.0 112
45 301.5 125 299.7 5188.9 3315 113
46 311.5 112 18.6 80.2 342.0 113
47 322.0 104 13.6 -50.1 16.5 114
48 3315 113 28.2 149.9 241.5 114
49 341.5 112 18.6 80.2 371.5 114
50 342.0 113 28.2 149.9 391.5 114
51 352.0 116 69.1 574.4 402.0 114
52 361.5 124 266.1 4340.7 381.5 115
53 362.0 117 86.7 807.6 392.0 115
54 371.5 114 39.8 251.5 412.0 115
55 381.5 115 53.5 391.0 421.5 115
56 391.5 114 39.8 251.5 442.0 115
57 392.0 115 53.5 391.0 191.5 116
58 402.0 114 39.8 251.5 352.0 116
59 411.5 112 18.6 80.2 1.5 117
60 412.0 115 53.5 391.0 362.0 117
61 421.5 115 53.5 391.0 1.0 119
62 432.0 112 18.6 80.2 451.5 119
63 442.0 115 53.5 391.0 361.5 124
64 451.5 119 128.0 1447.7 301.5 125

> 6892 3254 7034
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how the data are perceived. If too few or too many intervasiged, then the distribution of scatter
in the data will not be clear. Unfortunately, there are norgls for determining the appropriate
number of intervals to use. Experimentation with differeervals is one approach. In addition,
the following equation provides an empirical guide

k=1+33log,(n)

wherek is the number of intervals andis the number of data points. As an examplés equal
to 7 for the unit weight data set withequal to 64.

Table 2.2 Frequency Plot Data for Total Unit Weight

Interval Frequency of Frequency Cumulative
Lower Upper Number of Occurrences Density Frequency
Bound Bound Occurrences (%) (%/pcf) (%

(1) (2) (3) (4) () (6
90 94 0 0 0.00 0
94 98 2 3 0.78 3
98 102 21 33 8.20 36

102 106 9 14 3.52 50

106 110 6 9 2.34 59

110 114 13 20 5.08 80

114 118 9 14 3.52 94

118 122 2 3 0.78 97

122 126 2 3 0.78 100

126 130 0 0 0.00 100

> 64 100 25

Column 4 = Column 3/(3_ Column 3)
Column 5 = Column 4/(Column 2 — Column 1)
Column 6 = Running Total of Column 4
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Figure 2.1 Histogram of total unit weight
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2.2.2 Frequency Plot

The frequency of occurrence in each histogram interval tainbd by dividing the number of
occurrences by the total number of data points. A bar-cHattgh the frequency of occurrence
in each interval is called &tiequency plat The interval frequencies for the unit weight data are
calculated in Table 2.2, and the resulting frequency pleh®wyn on Fig. 2.2.
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0 .
90 98 106 114 122 130

Total Unit Weight (pcf)

Figure 2.2 Frequency plot of total unit weight

Note that the histogram and frequency plot have the samestrapconvey the same information.
The frequency plot is simply a normalized version of thedgsam. Because it is normalized, the
frequency plot is useful in comparing different data sets.

Example frequency plots are shown on Figs. 2.2 through 4¢h.2F2 shows the unit weight data,
which vary spatially.

Fig. 2.3 shows an example of data that vary with time. The datanonthly average pumping rate
measurements versus time for the leak detection system &zardous waste landfill. The data
vary from month to month due to varying rates of leachate ggio® and waste placement.

40%
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Figure 2.3 Frequency plot of monthly average flow rate for leak detectigstem
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Fig. 2.4 shows an example of data that vary between congtnyatojects. The data are the ratios
of actual to estimated cost for the remediation of Super{emgdironmentally contaminated) sites.
The data vary between sites due to variations in site camdifiweather, contractors, technology
and regulatory constraints. Note that the majority of prtgdnave cost ratios greater than 1.0.

40%

30% + n =102

20% +

10% +

Frequency of Occurrence

0% — —
0 1 2 3 4 5 6 7 8 9 10

Cost-Growth Factor

Figure 2.4 Frequency plot of cost-growth factor

Fig. 2.5 shows an example of data that vary between geotlhesting laboratories. The data
are the measured friction angles for specimens of loosev@tsand. Although Ottawa sand is a
uniform material and there were only minor variations ingpecimen densities, there is significant
variability in the test results. Most of this variability &tributed to differences in test equipment
and procedures between the various laboratories.

60%

45% + n=28

30% +

15% -

Frequency of Occurrence

0% f ‘ } :
10 18 26 34 42 50

Friction Angle (°)

Figure 2.5 Frequency plot of friction angle
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2.2.3 Frequency Density Plot

Another plot related to the histogram is the frequency dgrndot. The frequency density is
obtained by dividing the interval frequencies by the ingrwidths. A bar-chart plot of the
frequency density is called tHeequency density plofThe objective in dividing the frequency by
the interval width is to normalize the histogram furthere #lirea below the frequency density plot
(obtained by multiplying the bar heights by their widths@¢gal to 100%. This normalization will
be useful in fitting theoretical random variable models ®dhata, which will be discussed later in
this chapter.

The frequency densities for the unit weight data are caledla Table 2.2. Note that the units for
the frequency density are % per the units for the data, whiel®@per pcf in the case of the unit
weight data. The resulting frequency density plot is showifig. 2.6.
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Figure 2.6 Frequency density plot of total unit weight

2.2.4 Cumulative Frequency Plot

The cumulative frequency plotis the final graphical toot tha will present for variability analysis.
Cumulative frequency is the frequency of data points the¢ values less than or equal to the upper
bound of an interval in the frequency plot. The cumulatiegfrency is obtained by summing up (or
accumulating) the interval frequencies for all intervad$a the upper bound. A plot of cumulative
frequency versus the upper bound is calleddimulative frequency plot

The cumulative frequencies for the unit weight data areutated in Table 2.2. For example, the
cumulative frequency for an upper bound of 102 pcf is equdl%o+ 3% + 33% = 36%. The
resulting cumulative frequency plot is shown on Fig. 2.7.

A percentile value for the data set corresponds to the quoreing value with that cumulative

frequency. For example, the 50th percentile value for thewgight data set is 106 pcf (50 percent
of the values are less than or equal to 106 pcf), while the pétbentile value is equal to 117 pcf
(Fig. 2.7).
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Figure 2.7 Cumulative frequency plot of total unit weight

2.2.5 Data Transformations

In some cases, it is useful to transform the data beforeipdpit. One example is a data set of
measured hydraulic conductivity values for a compacted loteer. The frequency plot for these
data is shown on Fig. 2.8. It does not convey much about the skt because the hydraulic
conductivity values range over several orders of magnitdenore useful representation of the
data is to develop a frequency plot for the logarithm of huticaconductivity, as shown on Fig. 2.9.
Now it can be seen that the most likely interval is betweerf4@nd 1082 cm/s, and that most of

the data are less than or equal to 16m/s.
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Figure 2.8 Frequency plot of hydraulic conductivity

A second example of data for which a transformation is useilindrained shear strength data for
a normally consolidated clay. A frequency plot of these diata an offshore boring in the Gulf of
Mexico are shown in Fig. 2.10. The data exhibit substansaiability with depth, ranging from
500 to 5,000 psf. However, this frequency plot is misleadiegause much of the variability can be
attributed to the shear strength increasing with depthrdieioto demonstrate this trendseatter
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Figure 2.9 Frequency plot of log-hydraulic conductivity

plot of the undrained shear strength versus depth is shown o2 Rify. A more useful measure of
undrained strength is to normalize it by depth, as showngnZil2. This scatter plot shows that
the trend with depth has now been removed from the data, awhtiability in the shear strength
to depth ratio is much smaller than that in the undrainedrséteangth alone. A frequency plot of
the shear strength to depth ratio is shown on Fig. 2.13.
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Figure 2.10 Frequency plot of undrained shear strength

2.3 Quantitative Analysis of Variability

In addition to graphical analyses, the variability in a de¢é can also be analyzed quantitatively.
The statistics of a data set (also known as the sample gtatghere the data set is the sample)
provide quantitative measures of variability. Featurasiarest include the central tendency of the
data, dispersion or scatter in the data, skewness in theadataorrelation or dependence between
data points. Common statistical quantities are presentdds section.
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Undrained Shear Strength (psf)
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Figure 2.11 Scatter plot of undrained shear strength
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Figure 2.12 Scatter plot of shear strength to depth ratio

2.3.1 Central Tendency

The most common measure for the center of a data set is theggveslue, which is also called the
sample mean. Theample mears obtained as follows

I
,UX:E;%

wherei is the sample mean, is each data value, andis the total number of data points. For
example, the sample mean of the unit weight data set in Tablis given by 6892/64 = 108 pcf.

The sample median and mode are other measures of centreahtsnfibr a data set. Theample
medianis the 50" percentile value, while theample modés the most likely value. For example,
the sample median for the unit weight data set equals 106Rxgf 2.7), while the sample mode
equals 100 pcf (Fig. 2.2). The sample mode depends on theahtgidth used in the frequency
plot, and a data set may have more than one mode.
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Figure 2.13 Frequency plot of shear strength to depth ratio

Sample means, medians and modes for the data sets desaeelignliply are summarized in Table
2.3. Note that the mean, median and mode are not equal uhéedata distribution (the frequency
plot) is symmetrical and has a single mode (peak).

Table 2.3 Summary Statistics for Different Data Sets

Sample Sample
Sample Sample Sample Standard ~ Sample Skewness
Data Set Figure Mean Median Mode Deviation COVv Coeflicient
Unit Weight  Fig 2.2 108 pcf 106 pcf 100 pcf 7.19 pcf 0.067 0.31
LDS Flow Fig 2.3 778 gal/d  67.0 gal/d 37.5gal/d 43.1 gal/d 0.55 0.63
Cost Ratio Fig 2.4 2.22 1.74 1.5 1.93 0.87 2.1
Test Error Fig 2.5 29° 29° 28° 16° 0.55 -0.01
K, cm/s Fig 2.8 8.78x1078%  1x107%  1.25x1077 4.08x10~" 4.7 7.1
log(K) Fig 2.9 -7.81 -8.00 -8.30 0.613 0.078 1.4
USS Fig 2.10 2070 psf 2000 psf 1250 psf 1100 psf 0.53 0.81
USS/Depth  Fig 2.13  8.63 psf/ft  8.90 psf/ft  9.00 psf/ft  2.11 psf/ft 0.24 -0.4

2.3.2 Dispersion or Scatter

The amount of scatter in a data set is most easily measurdeklsatmple range. Trsample range
is simply the maximum value in the data set minus the minimatae. For the unit weight data
set, the range is 125 95 = 30 pcf (Table 2.1).

The sample variance is a measure of dispersion about the vaganof the data set. Treample
varianceis obtained as follows

1 n
A2 _ ~ \2
O-X_n_lzl(xllu)()




Probabilistic Methods in Geotechnical Engineering 24

whered? is the sample variance. The sample variance is the averape sfuare of the distance
between individual data points and the sample mean. Itewailialways be greater than or equal
to zero. For the unit weight data set, the sample varianceéndy 3 254/(64 — 1) = 517 pcf
(Table 2.1).

The sample standard deviatig@, is the square root of the sample variance, whilesample
coefficient of variatior{c.0.v.),d, is the standard deviation divided by the mean value

Q>

IS X
Ox =

x|

Since the standard deviation has the same units as the mkem tree c.o.v. is a dimensionless
measure of dispersion. The sample standard deviation and for the unit weight data set are
equal to 7.19 pcf and.79/108 = Q067, respectively.

Statistical measures of dispersion for the various dataaetsummarized in Table 2.3. Note the
large range of c.o.v. values, with a minimum of 0.067 and aimar of 4.7. Also, note how
accounting for the trend in undrained shear strength wititrd€~ig. 2.11) reduces the sample
c.o.v. from 0.53 to 0.24.

=)

2.3.3 Skewness

Since the sample variance is the average of the square ckdtam the sample mean, data values
the same distance above and below the sample mean contedpudgdly. Therefore, the sample
variance provides no indication of how symmetrically théadare dispersed about the mean. The
sample skewness, which is essentially the average of thedcdilstance from the sample mean,
provides a measure of symmetry for a data set. Sdraple skewness coefficieatdimensionless
measure of skewness, is given by the following

J

- [ n ] Y — )°
(n—21DMn-2) o3

where ¢ is the sample skewness coefficient. A skewness coefficiemend means that the
data values are distributed symmetrically about the mearevaA positive skewness coefficient
indicates that the data are skewed about the mean to the(tayteird larger values), while a
negative skewness coefficient indicates that the data aweeskto the left (toward smaller values).

The sample skewness coefficient for the unit weight datausleiq ((63§?62)) (£%) = 0.31 (Table
2.1), indicating that the data are skewed toward largereg(kig. 2.2).
Skewness coefficients for the other data sets are summaniZzeble 2.3. Most of the data are

positively skewed. Note how taking the logarithm of hydragbnductivity reduces the skewness
coefficient from 7.1 to 1.4 (Table 2.3).
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2.3.4 Correlation or Dependence

Two variables may be related to one another, as indicated dnater plot, such as that shown
on Fig. 2.11. The sample correlation coefficient is a meastitee degree of linear dependence
between two variables. Theample correlation coefficient is given by the following

Dy = > e (@ = )i — fiy)]
V2 = )7 (s — )2

wherez; andy; are paired observations of the two variables. The samplelation coefficient
ranges between -1.0 and 1.0, thati$.0 < p < 1.0. A value of zero forpindicates no linear
dependence between the two variables. A negative valperafiates that one variable tends to
decrease as the other increases, while a positive valumiegdithat one variable tends to increase as
the other increases. The closer the absolute valpafo™1.0, the stronger the linear relationship
between the two variables.

For example, the sample correlation coefficient betweerraineld shear strength and depth is
calculated in Table 2.4. The sample correlation coeffiagertual to

3.64x 10° _
V(473x10F)(388x 10F)

ﬁ:

This positive value near one indicates that the undrainedrs$trength tends to increase linearly
with increasing depth (Fig. 2.11).

2.4 Theoretical Random Variable Models

A random variable is a mathematical model to represent atiydhat varies. Specifically,
a random variable model describes the possible values hleaguantity can take on and the
respective probabilities for each of these values. Sinedréguency plot for a data set indicates
the probability of different values occurring (e.g., Fig2R a random variable model is just a
mathematical representation of the information containedfrequency plot.

Why is a theoretical random variable model needed to des@ildata set? First, a data set is
limited in size. For example, if another sample of 64 unitgi®imeasurements were obtained,
we would get a different frequency plot than that shown on Eig and different sample statistics
than those summarized in Table 2.3. We would need to medsaianit weight at every point in
the soil in order to obtain the "true" frequencies and diais A random variable is a theoretical
model of these "true" frequencies and statistics. Secondjast engineering problems we are
interested in combinations of variable quantities. Fomeple, a pile foundation will undergo
large displacements if the applied load exceeds the pilaagp We need to consider variability
both in the load and the capacity to design this foundatioand®m variable models provide a
mathematical framework for working with and combining nplé quantities that vary.

After a brief section on terminology, discrete and contisinodels for random variables will be
discussed in the following sections.



Probabilistic Methods in Geotechnical Engineering 26

Table 2.4 Correlation Between Undrained Strength and Depth

z Y
Depth USS (z — fix)? (y — v )? (@ — fix)(y — ftv)

(ft)  (psf) (ft%) (psf?) (ft-psf)
60.5 670 35519 1954912 263506
720 600 31316 2155558 259815
820 730 27877 1790731 223428
915 1180 24795 788867 139856
1015 1110 21746 918112 141297
112.0 1080 18759 976503 135345
122.0 1340 16120 530249 92453
132.0 980 13680 1184140 127278
1425 1130 11335 880185 99882
152.5 1390 9305 459931 65420
162.0 1240 7563 685885 72022
172.0 1690 5923 143021 29106
1915 1000 3302 1141012 61382
2015 2340 2253 73885 12901
2115 2120 1404 2685 -1941
2415 2260 56 36794 1432
2515 2180 6 12503 284
2618 2130 165 3821 794
2715 2540 508 222612 10633
2815 1320 1059 559776 24343
3015 2310 2760 58476 12704
3115 2000 3911 4649 4264
3315 3200 6812 1281012 93416
3415 1430 8563 407276 59055
3520 3010 10616 887021 97042
3615 2290 12664 49203 24963
3815 4080 17566 4047412 266639
3915 2670 20317 362185 85781
4020 4150 23420 4333967 318594
4115 1900 26418 28285 27336
4215 3290 29769 1492840 210808
4420 4520 37263 6011412 473290
4515 4370 41021 5208367 466202
ST 82160 68250 473789 38783291 3640666

ave  249.0 2068

2.4.1 Terminology

Random variables are generally denoted by capital lesers) asX representing unit weight. If
a random variable takes on a specific value, say if it is meastinen it is no longer random and it
will be designated with a lowercase letter. Therefaregpresents an observationrealizationof
X.

The range of possible values th¥tcan take on constitutes tisample spacéor X. For example,
the unit weight for a soil could be any value greater than .z&yp definition, the probability of
the sample space, e.g.[R >0 pcf], is equal to 1.0. The event that takes on specific values
is a subset of this sample space. An example is the eventhaitrtit weight is less than 100
pcf, which has a corresponding probability[)? < 100 pcﬂ. The probability distributionfor

a random variable is a function describing the probabiliigttit takes on different values, e.g.,
P[X =z].
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2.4.2 Discrete Random Variables

Discrete random variables can only take on discrete valutbsnvthe sample space. For example,
consider the number of projects awarded to a consulting firthe next monthX. If the firm has
submitted five proposals, then could be any of the following possible values: 0, 1, 2, 3, 4, 5.

The probability mass functiofPMF) for a discrete random variable describes its prohgbil
distribution. An example probability mass function is simoen Fig. 2.14. This PMF indicates
that the probability of O successful proposals is given IpyXP= 0] = 0.116, the probability of 1
successful proposalis given by R = 1] = 0.312, etc. Note that the individual probabilities f&r
between 0 and 5 sum to 1.0 since this range constitutes ailppesalues forX. The probability
that X is between two values can also be obtained from the PMF. Fonpbe, the probability that
X is greater than 1, PX > 1], is equal to 3336 + 0181 + Q049 + Q005 = Q571. The PMF forX

is denoted by the following mathematical form for notatibc@nvenience: PX = x] = p(x).
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Figure 2.14 Probability mass function for number of successful profgposa

Thecumulative distribution functio(CDF) describes the probability that the random variatlesa
on a value less than or equal to a given value. It is obtaindollasvs

Fe(@)=P[X <a]= Y pulay)

al z; <z

For example, the CDF evaluated at 1 for the random variablEign2.14 is given byF (1) =
0.116 + Q312 = 0428. The resulting CDF for this example is shown on Fig. 246te that the
PMF and the CDF contain the same information (each can béapeaefrom the other) plotted in
a different way.

The PMF and CDF are theoretical versions of the frequenciyaid the cumulative frequency
plot, respectively, for a data set. There are also the@iletersions of the sample statistics (in these
notes, the sample statistics are identified by a hat, for pl@jiis the sample statistic, or estimate,
of the distribution meap). Themean valudor a discrete random variable is obtained as follows

Hx = Z TPy (;)

all Z;
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Figure 2.15 Cumulative distribution function for number of succesgftdposals

wherey is the mean value oK. Note that the mean value is a weighted averag& pivhere
eachz; is weighted by its probability of occurrence. The mediamiesyalue ofX for which there

is an equal likelihood above and below, thafis(zmedian = 0.5. The mode is the value of that

is most likely, that ispy(zmoge) IS @ maximum. For the number of awarded projects (Fig. 2.14)
thx = 175, Tmedian= between 1 and 2, angnqqe = 2.

Similarly, thevarianceis obtained as follows

0)2( = Z (z; — ﬂx)sz(xi)

all x;

whereo , is thestandard deviatiomf X . The c.o.v. ofX, §,, is the ratio of the standard deviation
to the mean value
Ox
0y = —
‘/’LX‘

Finally, theskewness coefficierstobtained as follows

Yy = ai;g Z(xz - MX)3pX(xi)

X all z;

For the number of awarded projects (Fig. 2.14),= 1.07,6, = 0.61 andy, = 0.28.

An important tool when working with random variables is exga¢gion. Theexpectationof a
guantity is the weighted average of that quantity, whereptissible values are weighted by their
corresponding probabilities of occurrence. For example eixpected value of, denoted E.X],

is given by the following

E[X] =) apx(xs)

all z;

Note that the mean ok, ., is equal to its expected value[E]. The expected value of any
function of X, denotedy(X), can be obtained similarly

L] = gla)ps ()

all z;
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For example, the variance &f is equal to the expected value gfX) = (X — pu)>.

Expectation is a useful tool in working with multiple randasmriables and functions of random
variables, as you will see in later chapters. Itis also aulsedl in decision making, as discussed in
the previous chapter. As a simple, practical example of egpien, consider the random variable
describing the number of projects awarded to a consulting ifirthe next month (Fig. 2.14). If
the revenue of each project is $50,000, then the expecteduevn the next month is obtained as
follows

E[revenug = E [$50 000X | = $0(0116) + $50000(0312)
+$100 000(0336) + $150000(Q181)
+$200 000(Q049) + $250000(Q005)
= $87,500

We could also evaluate the expected profit. If at least $800d@ew revenue is required to operate
the office each month, 20% profit is realized on the next $100),8nd 30% profit is realized for
revenue above $150,000, then the expected profit is cadcligat follows

E [profit] = $0(0116) + $0(0312)
+$10 000(0336) + $20000(0181)
+ $35 000(Q049) + $50000(Q005)
= $8 945

Clearly, this office needs to find more sole-sourced projectsut its overhead.

Several of the most common models for discrete random asalye summarized in Table 2.5.
The PMF shown on Fig. 2.14 is an example of a binomial distidouwith n» = 5 (there are a
maximum of five projects that could be awarded) and 0.35 (the probability of winning an
individual project is assumed to be 35 percent).

Table 2.5 Common Models for Discrete Random Variables

Distribution

PDF

Mean

Variance

Explanation

Example

Binomial

px(z) = 2(n =) p*(1-p)" "

x=01,...,n

np

np(1 - p)

X represents num-
ber of occurrences in
n independent trials,
wherep is probabil-
ity of occurrence per
trial

flood
occurrences

Geometric

px(z) =p(l—p)**

z=12 ...

Dl

X represents the
number of indepen-
dent trials to the
next occurrence,
wherep is probabil-
ity <|)f occurrence per
tria

flood return
period

Poisson

(Vt)T —vt
x!

px(7) =

z=01,...

vt

vt

X represents the
number of indepen-
dent occurrences in
an interval of timet,
wherev is the aver-
age occurrence rate

earthquake
occurrences
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2.4.3 Continuous Random Variables

Continuous random variables can take on any value withiiséineple space. Total unit weight is
an example of a continuous random variable; it can take orvalue greater than zero.

The probability density functioiPDF) for a continuous random variable describes its prtibab
distribution. An example PDF is shown on Fig. 2.16. While 2F is similar to the PMF in the
information that it conveys, there is significant differeni these two functions. For a continuous
random variable, there is an infinite number of possible eshithin the sample space. Hence,
unlike a discrete random variable, it is not possible to @efire probability of the event that

is equal to a given value, since this probability is vanishingly small. Instead, ves cefine the
probability thatX is within a very small interval. This probability is propmmal to the PDF. For
example, the probability that the unit weight is within a drmderval about 110 pcf is greater than
the probability that it is within a small interval about 126fgFig. 2.16). The PDF is denoted
mathematically ag (x).

0.06

0.05 +

0.04 +
LL
O 0.03 +
o

0.02 +

0.01 + area = 0.62

90 100 110 120 130
Total Unit Weight (pcf)

Figure 2.16 Probability density function for unit weight

As with a discrete random variable, themulative distribution functioQCDF) for a continuous
variable describes the probability that the variable takes value less than or equal to a given
value. It is obtained as follows

Fe() = PLX <] = / e

Note that the CDF is the area under the PDF. For example thee&vBlaated at 110 pcf for the
unit weight is equal to 0.62 (Fig. 2.16). A plot of the CDF fariweight is shown on Fig. 2.17.

Since the probability of the sample space is equal to 1.0atéa under the PDF must equal 1.0.
Recall that the area under a frequency density plot for a skittés also equal to 1.0. Therefore,
theoretical PDFs can be fit to model a data set by overlayinigearétical PDF on top of a
frequency density plot. For example, Fig. 2.18 shows theretecal PDF for the unit weight
(Fig. 2.16) overlain on the frequency density plot (Fig.)2.6
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Figure 2.17 Cumulative distribution function for unit weight
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Figure 2.18 Probability density function and frequency density platdait weight

The expectation for a continuous random variable is defimétd same way as for a discrete random
variable; it is a weighted average, in which values are weigby their likelihood. However, since
there is an infinite number of possible values in the sam@eeshe process of summing up values
weighted by their likelihoods is an integration

o0

E[g(X)] = / 9(@) () da

J =00

Similarly, themean varianceandskewnes$or a continuous random variable are found as follows

o0

i = E[X] - / (@) de

[e.o]

02 =E[(X - ua)?] = / T () da

oo
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CE[X )] [ - )P f @) da
wx - 3 3

Ox Ox

Common models for continuous random variables are sumethiiz Table 2.6. The normal
distribution and the related lognormal distribution are thost common random variable models,
and they will be discussed further in this section.

Table 2.6 Common Models for Continuous Random Variables

Distribution PDF Mean Variance Explanation Example
Uniform 1 a+b (b — a)? test bias
fx@)=y—, asaz<bh 2 12
Triangular a+btu | L(a?+b?+u? construction
(I*a) a<lz<u 3 —au—bu—ab) cost

Exponential | ¢ )=y 4 >0 1 1 X represents the| earthquake
N v V2 time between return
independent oc- | period
currences, where
v is the ave. oc-
currence rate

Normal 1 7;(%,‘,)2 H o? X represents the| soil strength
fx(@) = e\ sum of many
oV 2w random variables

—o0 < <O

Lognormal 1 1o x| nxtiod o 2 (00 X represents the| hydraulic
fol@) = ——— e HERRE) e (e — 1) product of many | conductivity
T0In x V27 random variables

z>0

Thenormal distribution(also known as th&aussian distributiojis the classic bell-shaped curve
that arises frequently in data sets. For example, the umelashear strength to depth ratio data
from Fig. 2.13 are fit well by a normal distribution (Fig. 2)19he normal distribution is common

in nature because it results if individual random varialslesssummed together. Hence, data sets
ranging from course grades (the summation of scores fromidhal tests, homework problems
and projects) to the height of people (the summation of geméspver many generations) to the
undrained shear strength of soil (the summation of she&tapse between individual particles)
all tend toward normal distributions.

The normal distribution has several interesting properti€irst, it is a symmetrical distribution
(v is zero for a normal PDF). Second, its tails decay in an exptisemanner. There is a 68-
percent chance that a normal variable will be withih standard deviation from the mean value,
a 95-percent chance that it will be within+ 20, and a 99.7-percent chance that it will be within
1+ 30. Therefore, it is very unlikely (less than one-percent dedno observe a value outside of
+3 standard deviations from the mean value. Finally, a lilgaction of a normally distributed
variable also has a normal distribution YIf= ¢ X + b and X has a normal distribution, thén also
has a normal distribution with mean. = au, + b and standard deviatian, = ao .
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Figure 2.19 Probability density function for strength ratio

The CDF for a normal distribution (the integral of the PDR)icat be derived analytically. However,
it is widely tabulated and available on most spreadsheeajrpros. The first step in using these
tables is to normaliz& by subtracting its mean value and dividing by its standaxdadien:

:X*MX

Ox

Z

whereZ is the normalized version of; it has mean zero and unit variance. The tables then list
the CDF evaluated at as a function ok: F.(x) = ®(z) where® is called the standard normal
function. The standard normal values, as a function, @fre provided in Table 2.7. The function
NCRMSDI ST( z) in Microsoft Exce® also gives the standard normal functidr{;).

As an example of working with the standard normal functiamsider the undrained shear strength
to depth ratio data on Fig. 2.19. The probability that thtgres less than 12 psf/ft is calculated as
follows

T — [y 12—-8.63
< = = = = - | = . =
P[X <12 psfifi = Fy(x =12) = ( - ) i ( 511 ) ®(1.60) = 0945

Similarly, the probability that the ratio is greater thangdst/ft can be calculated as follows since
the total area under the PDF is equal to 1.0

P[X > 12 psf/ft] =1-P[X <12 =1-0.945=0055

The probability that the strength ratio is less than 4 p&/fialculated as follows

4 - 8.63

P[X < 4 psfifi :Fx(x:4):<b( 511

) = $(—2.19)

Although Table 2.7 does not ligt(z) values forz < 0, these probabilities can be calculated as
follows, since the normal distribution is symmetrical

P[X <4 psfff] = B(—2.19) = 1— $(2.19) = 1— 0.986 = Q014



Table 2.7 Tabulated Values for Standard Normal Distribution

z Dd(z) z P(z) z D(z) z Dd(z) z P(z) z D(z) z Dd(z)
0.00 0.50000 0.50 0.69146 1.00 0.84134 1.50 0.93319 2.00 0.97725 2.50 0.99379 3.00
0.01 0.50399 0.51 0.69497 1.01 0.84375 151 0.93448 2.01 0.97778 2,51 0.99396 3.01
0.02 0.50798 0.52 0.69847 1.02 0.84614 1.52 0.93574 2.02 0.97831 2.52 0.99413 3.02
0.03 0.51197 0.53 0.70194 1.03 0.84850 1.53 0.93699 2.03 0.97882 2.53 0.99430 3.03
0.04 0.51595 0.54 0.70540 1.04 0.85083 1.54 0.93822 2.04 0.97932 2.54 0.99446 3.04
0.05 0.51994 0.55 0.70884 1.05 0.85314 1.55 0.93943 2.05 0.97982 2.55 0.99461 3.05
0.06 0.52392 0.56 0.71226 1.06 0.85543 1.56 0.94062 2.06 0.98030 2.56 0.99477 3.06
0.07 0.52790 0.57 0.71566 1.07 0.85769 1.57 0.94179 2.07 0.98077 2.57 0.99492 3.07
0.08 0.53188 0.58 0.71904 1.08 0.85993 1.58 0.94295 2.08 0.98124 2.58 0.99506 3.08
0.09 0.53586 0.59 0.72240 1.09 0.86214 1.59 0.94408 2.09 0.98169 2.59 0.99520 3.09
0.10 0.53983 0.60 0.72575 1.10 0.86433 1.60 0.94520 2.10 0.98214 2.60 0.99534 3.10
0.11 0.54380 0.61 0.72907 1.11 0.86650 1.61 0.94630 2.11 0.98257 2.61 0.99547 3.11
0.12 0.54776 0.62 0.73237 1.12 0.86864 1.62 0.94738 2.12 0.98300 2.62 0.99560 3.12
0.13 0.55172 0.63 0.73565 1.13 0.87076 1.63 0.94845 2.13 0.98341 2.63 0.99573 3.13
0.14 0.55567 0.64 0.73891 1.14 0.87286 1.64 0.94950 2.14 0.98382 2.64 0.99585 3.14
0.15 0.55962 0.65 0.74215 1.15 0.87493 1.65 0.95053 2.15 0.98422 2.65 0.99598 3.15
0.16 0.56356 0.66 0.74537 1.16 0.87698 1.66 0.95154 2.16 0.98461 2.66 0.99609 3.16
0.17 0.56749 0.67 0.74857 1.17 0.87900 1.67 0.95254 2.17 0.98500 2.67 0.99621 3.17
0.18 0.57142 0.68 0.75175 1.18 0.88100 1.68 0.95352 2.18 0.98537 2.68 0.99632 3.18
0.19 0.57535 0.69 0.75490 1.19 0.88298 1.69 0.95449 2.19 0.98574 2.69 0.99643 3.19
0.20 0.57926 0.70 0.75804 1.20 0.88493 1.70 0.95543 2.20 0.98610 2.70 0.99653 3.20
0.21 0.58317 0.71 0.76115 1.21 0.88686 1.71 0.95637 2.21 0.98645 2.71 0.99664 3.21
0.22 0.58706 0.72 0.76424 1.22 0.88877 1.72 0.95728 2.22 0.98679 2.72 0.99674 3.22
0.23 0.59095 0.73 0.76730 1.23 0.89065 1.73 0.95818 2.23 0.98713 2.73 0.99683 3.23
0.24 0.59483 0.74 0.77035 1.24 0.89251 1.74 0.95907 2.24 0.98745 2.74 0.99693 3.24
0.25 0.59871 0.75 0.77337 1.25 0.89435 1.75 0.95994 2.25 0.98778 2.75 0.99702 3.25
0.26 0.60257 0.76 0.77637 1.26 0.89617 1.76 0.96080 2.26 0.98809 2.76 0.99711 3.26
0.27 0.60642 0.77 0.77935 1.27 0.89796 1.77 0.96164 2.27 0.98840 2.77 0.99720 3.27
0.28 0.61026 0.78 0.78230 1.28 0.89973 1.78 0.96246 2.28 0.98870 2.78 0.99728 3.28
0.29 0.61409 0.79 0.78524 1.29 0.90147 1.79 0.96327 2.29 0.98899 2.79 0.99736 3.29
0.30 0.61791 0.80 0.78814 1.30 0.90320 1.80 0.96407 2.30 0.98928 2.80 0.99744 3.30
0.31 0.62172 0.81 0.79103 1.31 0.90490 1.81 0.96485 2.31 0.98956 2.81 0.99752 3.31
0.32 0.62552 0.82 0.79389 1.32 0.90658 1.82 0.96562 2.32 0.98983 2.82 0.99760 3.32
0.33 0.62930 0.83 0.79673 1.33 0.90824 1.83 0.96638 2.33 0.99010 2.83 0.99767 3.33
0.34 0.63307 0.84 0.79955 1.34 0.90988 1.84 0.96712 2.34 0.99036 2.84 0.99774 3.34
0.35 0.63683 0.85 0.80234 1.35 0.91149 1.85 0.96784 2.35 0.99061 2.85 0.99781 3.35
0.36 0.64058 0.86 0.80511 1.36 0.91309 1.86 0.96856 2.36 0.99086 2.86 0.99788 3.36
0.37 0.64431 0.87 0.80785 1.37 0.91466 1.87 0.96926 2.37 0.99111 2.87 0.99795 3.37
0.38 0.64803 0.88 0.81057 1.38 0.91621 1.88 0.96995 2.38 0.99134 2.88 0.99801 3.38
0.39 0.65173 0.89 0.81327 1.39 0.91774 1.89 0.97062 2.39 0.99158 2.89 0.99807 3.39
0.40 0.65542 0.90 0.81594 1.40 0.91924 1.90 0.97128 2.40 0.99180 2.90 0.99813 3.40
0.41 0.65910 0.91 0.81859 1.41 0.92073 1.91 0.97193 2.41 0.99202 291 0.99819 341
0.42 0.66276 0.92 0.82121 1.42 0.92220 1.92 0.97257 2.42 0.99224 2.92 0.99825 3.42
0.43 0.66640 0.93 0.82381 1.43 0.92364 1.93 0.97320 2.43 0.99245 2.93 0.99831 3.43
0.44 0.67003 0.94 0.82639 1.44 0.92507 1.94 0.97381 2.44 0.99266 2.94 0.99836 3.44
0.45 0.67364 0.95 0.82894 1.45 0.92647 1.95 0.97441 2.45 0.99286 2.95 0.99841 3.45
0.46 0.67724 0.96 0.83147 1.46 0.92785 1.96 0.97500 2.46 0.99305 2.96 0.99846 3.46
0.47 0.68082 0.97 0.83398 1.47 0.92922 1.97 0.97558 2.47 0.99324 2.97 0.99851 3.47
0.48 0.68439 0.98 0.83646 1.48 0.93056 1.98 0.97615 2.48 0.99343 2.98 0.99856 3.48
0.49 0.68793 0.99 0.83891 1.49 0.93189 1.99 0.97670 2.49 0.99361 2.99 0.99861 3.49
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0.99916
0.99918
0.99921
0.99924
0.99926
0.99929
0.99931
0.99934
0.99936
0.99938
0.99940
0.99942
0.99944
0.99946
0.99948
0.99950
0.99952
0.99953
0.99955
0.99957
0.99958
0.99960
0.99961
0.99962
0.99964
0.99965
0.99966
0.99968
0.99969
0.99970
0.99971
0.99972
0.99973
0.99974
0.99975
0.99976

BulidauIBug [e21UY231099) Ul SPOYIBIA 21SI|Igeqold

ve



Probabilistic Methods in Geotechnical Engineering 35

Finally, we can calculate the probability that the undrdisgength is less than a design value of
250 psf at a depth of 50 ft. L&t = 50X. Then,Y has a normal distribution with a mean of
50(863) = 432 psf and a standard deviation of 509 = 106 psf. The probability thaf is less
than 250 psf is calculated as follows

250 432

P[Ygzsopsj‘:cb< 106

) =d(—1.72) =1 $(1.72) = 1 0.957 = Q043

The lognormal distributionis related to the normal distribution as follows: if the logam of a
variable has a normal distribution, then the variable hagyadrmal distribution. The lognormal
distribution is commonly used for three reasons. Firsiesutts if you multiply many individual
random variables together. Hence, any process that is tduriptr of individual random variables
will tend to be described by a lognormal distribution. Se;ahe lognormal distribution models
variables that cannot be less than zero. Since many engiggaoperties, such as strength, are
non-negative, the lognormal distribution is a reasonalddeh Finally, the lognormal distribution
is convenient for modeling quantities that vary over seh@@ders of magnitude, such as hydraulic
conductivity.

An example of alognormal distribution for the hydraulic doetivity data setis shown on Fig. 2.20.
Note that this distribution is symmetrical when plotted dagarithmic scale, but positively skewed
on an arithmetic scale.
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o, = 1.411In(cm/s)
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50% + // <
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N
0% - M |_l .
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Logarithm of Hydraulic Conductivity (cm/s)

Figure 2.20 Probability density function for hydraulic conductivity

Since the lognormal distribution is related to the normatritbution, the CDF for the lognormal
distribution can be calculated using the standard normadtian. The relationship between the

two is as follows
In(x) — umx>

Olnx

P[X < 2] ZFX(x):CD(

whereX has alognormal distribution with parameteys, andoy, « (Table 2.6), which are just the

mean and standard deviation of ). For example, the probability that the hydraulic conduiti

(Fig. 2.20) is greater thanx110~’ cm/s is calculated as follows

IN(1x10°") — (—18.0)
141

P[X >1x10"cm/g =1— & ( ) =1- ®(1.33) =1- 0.908 = 0092
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2.5 Reliability-Based Design

Reliability-based design approaches are becoming commowii engineering. For example, U.S.
codes for concrete and steel design are reliability-babedddition, a reliability-based approach
was adopted by the European Community in the new Eurocoddatds. These approaches are
referred to by the names Load and Resistance Factor DesRffX).in the U.S. and Limit State
Design (LSD) in Europe.

The objective of a reliability-based design approach isskuge satisfactory system performance
within the constraint of economy. Most designs are developighout the benefit of complete
information and under conditions of uncertainty. What maxm load will a structure experience
over its lifetime? How will the strength of steel change asiaction of time due to corrosion?
Because of these uncertainties, there always exists a elwantsk of failure. In most cases, it is
not practical or economical to eliminate this risk. All d@siapproaches implicitly balance costs
and benefits; a reliability-based approach attempts teeselhis balance in a more systematic and
rational manner.

2.5.1 Traditional Design Approach

Conceptually, most problems can be described in terms ad {3 and a resistancé;. The load
represents the load applied to the system (e.g., an axidldoaa column, the volume of water
entering a treatment facility, etc.), while the resistareq@esents the capacity of the system (e.qg.,
the axial capacity of column, the capacity of a treatmemtpletc.). Traditional design approaches
are deterministic. We account for uncertainties in the laad resistance by requiring a resistance
that is greater than the estimated load

Rreqd Z FSS

whereF is a factor of safety. The factor of safety typically rangesaeen 1.0 and 3.0; however
values as large as 10 or 100 may be used in some instances.

For example, consider an offshore pile that is subjectedltad of 4,000 kips during a storm,
S = 4,000 kips. Using a factor of safety of 1.5, we determine thatrdguired pile capacity should
exceed 1.5(4,000), ak,.,; > 6,000 Kips.

2.5.2 Reliability-Based Design Approach

With a reliability-based approach, we attempt to accouptieitly for uncertainties in the load and
resistance. For example, assume that the load is modelacwidbrmal distribution with a mean
of 4,000 kips and a c.o.v. of 0.20. Also, assume that theteegis is normally distributed with a
mean value that is 1.5 times the mean loag= 1.5 = 6,000 kips, and a c.o.v. of 15 percent.
We can now calculate the probability that the load exceeelsdbistance as follows

P[S > R]=P[R< S] =P[R - S < 0] =P[X < 0]

Recall that one objective in developing theoretical randarable models was to provide a
mathematical framework for combining random variablesait be shown that a linear combination
of normal random variables, suchd@s= R — S, whereR andS have normal distributions, will also
have a normal distribution. Further, the mean and standaridtion for X are given as follows

lLy = [1p — i = 6,000— 4,000 = 2000 kips
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oy =/02 +02 = /(0.2 x 4,000 + (0.15 x 6,000¢ = 1,200 kips

assuming thaf? and .S are statistically independent. The probability that thedl@xceeds the
resistance is then calculated as follows

0— 2,000

< =
PIX <0 q’( 1,200

) = &(—1.67) = 0047

Therefore, the probability of failure for this column is 84 and itsreliability is 0.953 or 95.3
percent. The factor 1.67 in the above equation is known aetiadbility index . As [ increases,
the probability of failure decreases. Hengas similar in behaviour to the factor of safety.

What if there is more uncertainty in the resistance, and.d/cincreases from 15 to 20 percent?
Using the same factor of safety (i.é7; = 1.5), we will obtain a different probability of failure.
The mean value ok remains the same, but, increases from 1,200k to 1,440k. The probability
of failure increases from 0.047 to 0.082, and the reliabtiécreases from 95.3 percent to 91.8
percent. Therefore, a consistent factor of safety of 1.5 st necessarily produce a consistent
level of reliability.

By explicitly accounting for uncertainties, we can attengpdchieve a consistent level of reliability
using the reliability-based design approach. We can ashathle required mean resistange, to
achieve a specified reliability (i.e., a target probabitifyailure). For example, what should, be
to obtain a reliability of 99 percent? We can answer this jaess follows

» 3<001
3>233
oy > 2330,

By substituting the equations far, andc, from above, we obtain

[ — 4,000> 2.33,/80C + (0.15/1,)2

Solving foru,, we find that the probability of failure will be less than ouedito 0.01 ifu, > 7,110
kips. Therefore, we will achieve our target level of religpiif we multiply the mean load by a
"safety factor" of 7110/4,000, or 1.78.

In summary, a reliability-based design approach consfdtsdfollowing steps:

1) Select a target probability of failure,.. This failure probability is established considering
costs, consequences of failure, engineering judgmenttigsolnd experience. Historical
failure probabilities for civil engineering facilities@between 10° to 10~%; therefore, target
failure probabilities for new designs are typically withims range.

2) Calculate the required reliability indeg, to achieve the target failure probability
ﬁ = 7®_1(pF)
If S andR are statistically independent normal variates, then
Hr — Us

\/ o2 + 02

3) Find the mean resistance required to achieve the target

ﬁ:
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2.5.3 From Theory to Practice

Practice is not yet ready (or willing) to implement a fullyopabilistic design approach. Design
codes are being developed using probabilistic analyseseVer, the codes themselves are still
deterministic. The following general equation is used tedaine the required mean resistance

Olp > Vs

where the load and resistance factorgJoad factor) ands (resistance factor), are specified for
different design cases. In our example, we assumedsthas equal to 1.0, and found thaivas
2.21 to achieve a target failure probability of 0.01. Thellead resistance factors are intended to
account for uncertainties iR and.S, and they are developed from probabilistic analyses otglpi
design cases. However, the uncertainties and targetdgilababilities used in the probabilistic
analyses are transparent to the code user; only the loadesistance factors themselves are
specified.

2.5.4 Advantages and Limitations of a Reliability-Based Dgign Approach

There are several advantages in using a reliability-baspobach versus the traditional approach:

1) A factor of safety does not provide information on the lefesafety in the design. The same
factor of safety may produce two designs that have differelrbilities. A reliability-based
approach allows us to quantify the reliability, and load eeglstance factors are developed to
achieve consistent levels of reliability among differeasigns.

2) Factors of safety are based on experience with similagdesWhat if we don’t have experience
(e.g., anew construction material or a new environment)2M¥bur experience is not positive?
Areliability-based approach provides the ability to deyahew designs that achieve a specified
reliability.

3) Since a factor of safety has no real meaning in terms cdlviity, it is difficult to select an
optimum factor of safety. By quantifying reliability, we gerform cost-benefit analyses to
balance construction costs against the risk of failure.

However, reliability-based approaches in their currentnf¢e.g., LRFD) do have limitations. The
code user does not have control over the target failure pitlyaand cannot directly incorporate
the uncertainties associated with their specific designthEy even a purely probabilistic approach
cannot prevent poor engineering; it can only help to makelgrgineering better.



Chapter 3

Correlation, Multiple RV’s, and System Reliability

by Wilson Hon C. Tang

3.1 Correlation in Geotechnical Engineering

Empirical relations are often used in geotechnical engingeio correlate soil properties. For
example, the compression ind€xwith the void ratio e or liquid limitL 7, relative densityD, with
SPT, and strength ratis$, / s'p with Plasticity Index,,.

The purpose is to estimate soil parameters needed for &alyd design by using some indirect
index properties that are relatively cheaper and easiebtairn If indeed an excellent relation

existed between the properties, this would provide a cdsttfe way for obtaining the required

soil parameters. Oftentimes, the empirical relations ¢dwé far from perfect and hence the
additional implicit uncertainties associated with thipagach need to be assessed.

Fig. 3.1 shows two hypothetical empirical relations thateheen established from test data.
Clearly one would have more confidence in using relationahiut an engineer may like to know
how reliable it is in using relationship B. Would the relitlyiimprove if one increased the number
of indirect tests used, and by how much? Should the engireepaly direct tests? Could one
supplement the information from limited number of diredtsewith less costly indirect tests? To
address these questions, the probabilistic implicatiarsofg an empirical relation is presented as
follows.

Consider the simple case where the empirical relation isceqypately linear and the scatter of
the data is approximately constant about the predictiomecuA linear regression with constant
variance can be performed (e.g. see Ang and Tang, 1975) amadot estimate of the mean value
of Y as a function of, i.e.E[Y | z] = a + bz, and also an estimate for the variance, i.e. NVarz].
The former denotes the predicted valueYofor a given value of: whereas the latter denotes a
measure of the error associated with using the empiricatiogl for prediction; in fact, the square
root of Var[Y | z] is referred to as the calibration error, i€.. If the empirical relation has been
established by using only a limited set of data, then adufiestimation error will arise due to the
lack of sufficient data for establishing the empirical nelat However this error will be generally
small relative to the calibration error and it will be nedkatin the subsequent examples.

In the following example, we try to compare the predictedieadf a soil parameter and its prediction
error based on several sources of information namely:

1) n direct tests
2) m indirect tests
3) subjective judgment

39
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Direct test value, Y
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Individual test value, X
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J
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Direct test value, Y
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Individual test value, X
Figure 3.1 Example empirical relationships

For simplicity, the tests are assumed to be statisticaliefpendent. For the direct tests, the
prediction error is proportional to the scatter of the dattibversely proportional to the number
of testsn. For the indirect tests, the calibration eremgrhas to be added (in a root mean square
sense) to the scatter of the data. Lastly, based on sulggatigement, the uncertainty of the soil
parameter is described by a distribution for which the gpoading mean and standard deviation
can be inferred ag’ ando’ respectively. Bayesian probability procedure is useddonlgining the
estimates.
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Assuming soil samples are statistically independent, ther @ssociated with an estimate of the

mean can be calculated as follows;
1) from direct tests;

R 1< :
fix =~ Zl z;  (estimator)

5 Ox (estimator error)
Ojx = n
n
wherecs is the estimated standard deviationof
2) from indirect tests;

whereo, is the standard deviation of the random calibration error.

Xer cohesion

Xej A
X
Figure 3.2
3) from subjective judgement
~ —_ !/
Hx = H
64 =0

bx

X, blow count

An example to follow describes how 7 triaxial tests and 9 btownt values can be combined with
judgmental information to yield the overall estimate of thean cohesion of residual clay for Hong

Kong and a measure of its overall error. The empirical retatised is

¢ =38N (in psf)
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where N is the blow count (in blows per ft) with a calibration error @80 psf based on the data
reported by Lumb (1968) for residual soil in Hong Kong.

Example 1: Estimation of Mean Cohesion of Residual Clay
Assumer’, = 215. Sources of information;
I) experience: 2108 500 psf with 95% probability

fix, = 2100
&[Lxl =255

ii) 7 triaxial tests:{2150 1890 1950 165Q 234Q 1980 2040} psf
1 7
fix, =5 )_ ;= 2000

=1

. 215
O'ﬂxz —W —81.3

iif) 9 blow count values:{28 45 35 52 67,71 48 50,58} blows per foot

S 19
fixy = g > 38N; = 1917
1=1

. [212+750
by = \| g = 260

_ 2100x 81.3%+2000x 255

Combining (i) and (ii) gives

fix 8132 + 255 = 2009
. 813 x 255
Opy = —=—=——=—=—==115

V8132 +25%
Combining further with (iii) gives
_2009x 2607 +1917x 77.5* _

f = 260 + 7757 = 2002
. 260x 77.5
Ohy = ———=—= =143

/260 + 7752

The coefficient of variation of the final mean estimatejs /ji, = 74.3/2002 = 37%.
Observations:

1) The prediction error using indirect tests could be smalfian that using direct tests provided
that more indirect tests are used and the calibration esnalatively small.
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2) In combining estimates from two sources of informatidme formula for calculating the
weighted mean is inversely proportional to the error of #spective estimates. Also the error
of the combined estimate is always smaller than the errdreirtdividual estimate.

Further reference:

1. Luwms, P., "Statistical Aspects of Field Measurements," Procees]ifkgpurth Australian
Road Research Conference, 1968, p.1761.

2. Tanag, W., "A Bayesian Evaluation of Information for Foundation Emggring Design", in
Statistics and Probability in Civil Engineering, Procewys of the First ICASP, Hong
Kong University Press, 1971, pp.174-185.

3.2 Performance Involving Multiple Random Variables

The following examples are used to demonstrate relialpiigblems that involves more than one
random variable. In this case, the degree of correlationdx random variables will be important
factor affecting the reliability.

Example 2: Differential settlement between footings

Consider two adjacent footings as shown in Fig. 3.3. Supiheseettlement of each footing follows
a normal distribution with a mean of 2 inches and a standardhtien of 0.5 inches. Assume that
a differential settlement exceeding say 1 inch is consttiénebe unacceptable. Determine the
probability of unacceptable differential settlement agptms pair of footings.

s

1
Figure 3.3

Case 1 The settlements are statistically independent

Let
D= Sl— Sz

whereS; andS, denote the settlement of footings 1 and 2. It could be shoan/?halso follows
a normal distribution with mean and standard deviation Hevis:

Pp = ps, — s, =2—2=0

0, = /02 +02 =052+ 05 = 0707
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Hence, the probability of unacceptable differential setiknt is

P[|D|>1] =P[D > 1] +P[D < —1] = 2P[D > 1]

“2[1# (5707)

=0.157

Case 2 The settlements are correlated

Generally, the load and soil properties affecting the seténts between adjacent footings are
similar. Suppose the correlation coefficiemtjs 0.8, thenD is also normal with mean value 0 but
its standard deviation becomes

op = \/05%1 +03, — 2p05,05,
= ,/0.52 + 0.52 — 2(0.8)(0.5)(0.5)
=0.316

and the probability of unacceptable differential settlatt®comes

P[ID|>1] =P[D > 1] +P[D < —1] = 2P[D > 1]

[t (Gaag)

= 0.00156

Onthe other hand, ifindeed the settlements of the two fgstare the same, i.e. perfectly correlated
with p = 1, then

op =/0.52+0.52 — 2(1)(05)(0.5) = 0

and hence P D| > 1] will equal to zero.

Fig. 3.4 shows how the probability of unacceptable diffeéedisettlement decreases with increasing
correlation. In other words, the effect of correlation isingprove the performance reliability;
neglecting this correlation effect could be very conseveat
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N
=}

0.1

P[|ID|>1in]

I I I I |
0 0.2 0.4 0.6 0.8 1

Correlation Coefficient

Figure 3.4 Probability of unacceptable differential settlement

Extension to multiple footings

Consider a grid of footings as shown in Fig. 3.5. Determinihg probability of excessive
settlement or differential settlement by following an aniahl approach like that above will be very
cumbersome. A practical procedure is through the MontedCairhulation method. The method
calls for the simulation of possible scenarios on the gatlat values of each footing according
to the probability distributions of the random variablegalved, and then infer the probability
of various events from the observed outcomes of all simadatuns. In the example as shown,
three different models are studied where soft pocket canrégept (in models 2 and 3) in an
otherwise stiff medium. The soft pocket is considered amaaip A whose occurrence between
footings can be correlated (as in model 3). The probabilityarious settlement performance
indicators (e.g., maximum settlement > allowable settle#iner maximum differential settlement
between adjacent footings > allowable differential setdat) are presented in Fig. 3.5 for the three
models. Generally, potential presence of anomalies wdhseperformance (i.e. by increasing the
probability of unsatisfactory performance); howeveryretation between anomaly presence under
adjacent footings improve the performance. Through thet®l@arlo Simulations procedure, the
fraction of footings that have excessive settlement caridmeemsily estimated as shown.
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el

Figure 3.5 Grid of footings each settling by;

Model 1: S = N(1,0.3) inches
correlation coefficient = &
Model 2: Probability of soft pocket = 01
s.i. between footings
S4 =N(2,0.6) inches

Model 3: Probability of Ato A =002

Allowable max. S is 2 inches
Allowable max. differential settlementis 1.5 inches

B——8 P[Sx>2"]

1 o © Pl (Snax~ Snin) > 15"

O-———% P[ D> 1.5"], Dpax= max. diff. sett. between adjacent footings
—-—-& P[S>2"], fraction of footings with S > 2"

probability
0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

0

model

Figure 3.6 Estimated probabilities of unsatisfactory settlementqgerance — Models 1, 2, and
3 (50 runs with 200 samples per run)
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Example 3: Consolidation settlement

In this example, a first order uncertainty analysis will belaga to the settlement problem. Note
that relative contribution to the overall uncertainty deg® both on sensitivity factors and the
uncertainty of individual variables.

Structure

////////,{\///////

* . Sand C

Normally Consolidated

H *B Clay

7N 7N Y
Rock
Figure 3.7 Settlement in consolidated clay

The actual settlement is expressed as

3 C. po+ Ap
S—N(1+eo> Hloglo( S )

whereNN is the model errorl. is the compression indey,, is the effective pressure at B, arigp
is the increase in pressure at B.

Given the statistics (wherkeis the coefficient of variation)

Variable Mean SD )
N 1.0 0.100 0.1
C, 0.396 0.099 0.25
€o 1.19 0.179 0.15
H 168 inches 8.40 0.05
Do 3.72 ksf 0.186 0.05

Ap 0.50 ksf 0.100 0.20
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First order analysis of uncertainties:

If Y = g(X1, X5, ..., X,,) then first order estimates of the mean, and coefficient of variation,
oy, of Y are

IUY = g(/’LX]_? IuX27 e a:uXm)

52:Zm: 9g_Iix, 252:%5252
Y - an ., J jY5

j=1

In this caseu, = 1.66.

Defining S; = (aS/an)(qu/uS), the components contributing to the uncertaintySircan be
found as follows;

X; 5 S; 5252 %

N 10 010 1.0 001 8.4
C. 039% 025 10 0.0625 524
e, 119 015 -055 0.0068 5.7
H 168 0.05 1.0 00025 21
p» 372 005 -094 00022 1.8

Ap 050 0.20 094 0.0353 296

Giving 6, = 0.345.

3.3 Multiple Failure Modes - System Reliability

Example 4: Retaining wall

Three failure modes can be identified in Fig. 3.8, namelyy@rturning of the wall, (ii) horizontal
sliding of the wall and (iii) bearing capacity failure of tfi@undation. The system probability of
failure will be the probability of at least one of these moda&soccur. Because of the correlation
between the failure modes, the system failure probabikity only be practically determined in
terms of bounds. First order reliability method (FORM) wagdi first in determining the failure
probability of individual mode.

Note that in the conventional approach, one can only deterthie factor of safety for each mode;
however, in the probabilistic approach, one can combinathigidual failure mode probability to
estimate the total failure probability for the system.
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2’ surcharge to account for highway load

N
Backfill
16’ y=0.11 Kcf
p=34°, §,= 10%
4’
+
9’ 6" [} .
8’ 6 — <. .t Medlgm-Dense Sand

Figure 3.8 Retaining wall reliability

Potential Failure Modes:
1) Overturning of wall

91(X) = 1125 — 1951 tarf (45— %)
2) Horizontal sliding of the wall

92(X) = 2014 tarv — 26.6tarf (45— %)

3) Bearing capacity failure of wall foundations
— assume negligible contribution in this example

For the overturning mode,
pry, =0.3x1077

For the horizontal sliding mode,
pr, = 0.01044

Hence the first-order bounds on the failure probability are

0.01044< p, < 0.01044 + 03x 10’
indicating that the failure probability is about01044. The first order bound is sufficient in this
case because there is a dominant failure mode, namely thhtad sliding.

Example 5: Slope failure

For a given slope, there could be thousands of potentiakslifaces. The slopes can fail through
sliding along each of those slip surfaces, although witlyingrlikelihood. Hence the probability
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of slope failure would be equal to the probability that asteane of these slip surfaces will have
resistance less than the driving load caused by the weighedfoil. Fortunately in this case, the
soil resistance between individual slip surfaces are ligbtrelated. Hence the system failure
probability could be close to the slip surface with the hgjhgrobability of failure. For example,
Oka & Wu (1990) show that for a cut slope in Chicago, the prditglof failure considering all
slip surfaces is less than twice the failure probabilityta iost critical slip surface.

Note that in the non-probabilistic approach, we considdy dme slip surface with the lowest

factor of safety. The questions of: "Is that really the magtaal slip surface considering various
uncertainties?" and "How would all those other potenti@l slirfaces affect the safety level of the
slope?" are not addressed.



Chapter 4

Data Analysis/Geostatistics

by Gordon A. Fenton

4.1 Random Field Models

Consider a clay barrier of extent 4G10 metres. If permeability tests were carried out at suffitye
close spacing, the permeabiliy might appear as shown in Fig. 4.1, which plots log-permégbil
against spatial position. Clearly this permeability field(x), appears quite random. In the
following, vectors will be denoted by underscoring the spbith a tilde character, so that

is a vector describing a spatial position with coordinates«,, x3) in three-dimensional space.
Similarly, matrices will be denoted by underscoring wittottitdes, for exampled.

It seems reasonable to make the following observationstdabedield displayed in Fig. 4.1;

- points which are very close together tend to have similangabilities, thatis the permeabilities
arehighly correlated

- points which are far apart may have quite different pernmigials. Inthis case the permeabilities
arepoorly correlated

In general, correlation between points tends to decreasedigtance.

To produce a plot like that shown in Fig. 4.1, a significant antef information must be gathered
from the field, which is an expensive undertaking. On the rokt@end, if the information is not
gathered then the permeability at most pointsingertainand this uncertainty must enter into
any design decisions. As engineers, the task is to mininaizgéng costs while still being able
to make informed decisions. For this, random fields are igealited as models of the spatially
distributed uncertainty and they can be used to produceapility statements regarding the design
criteria.

51
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In(K )

40

20
0 o X

Figure 4.1 Permeability field measured over a 4310 metre square.

One of the major features of a random field representatiorsoflas the concept of statistical de-
pendence between field values at different points. In géaeendom field X (z), is characterized

by;

1) its meanu(z). This may be spatially constant, or may vary as a functiom,dhe latter a
feature ofnon-stationaryalso callechon-homogeneousandom fields,

2) its varianceg?(z), which represents the degree of scatter in the field ab®utéan,

3) its correlation structurep(x, ), which gives the correlation coefficient betweg&ifx) and
X (z') for any two pointsy andz’,

4) its higher order moments: in practice, these may be diffioestimate accurately,

5) its complete multivariate joint probability density fttion (PDF). This is the complete prob-
abilistic description of all the points in the field from whiprobability calculations can be
made.

Specifically, a random field is a set of random variabkés, X,, ..., each associated with the value
of the soil property of interest at the pointg ., . .. in the field.
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p(L)

X(X)

X1
Figure 4.2 2-D random field showing correlation structure and margiistribution.

Due to difficulties in estimating higher order moments, @ndfield representations are often
restricted to information about the mean, variance ancetation structure. This usually leads to
the adoption of relatively simple joint pdf's as models foe field, for example multivariate normal

or lognormal distributions. The correlation structure fiiep assumed to be a simple function of
distance between points, governed by a single parameterminonly used model is one in which

the correlation decays exponentially with distance,

) =exp{ 271}

where the parametéris call thescale of fluctuation Loosely speakingd is the distance beyond

which the field is effectively uncorrelated (i.e. for the abanodel, if the distance between two
pointsisr > 6, then the correlation coefficient between these two pogitsis than 0.14). Another

way of looking at it is that any two points closer togethemtfidend to be strongly correlated. As
a result, fields having small scales of fluctuation tend ty \earatically over shorter distances —
they appear very ‘rough’. Fields having large scales of flatton, according to the above model,
tend to be more slowly varying and smoother. From the poimi@# of data gathering, the latter
type of field often presents problems. What may appear to tend tn the data may in fact just be
a slow variation that sooner or later reverses direction.

How a random field model is used depends on the questions bskegl and the type of data
available. In particular, the issue of whether or not datveslable at the site being investigated
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has a significant impact on how the random field model is defaretl used. Some possible
scenarios are as follows;

1) data is gathered at the site in question over its entireagiom

- here arandom field is being modeled whose values are knathe data site locations and
no attempt will be made to extrapolate the field beyond thgeant the data.

- a representative random field model can always be estimagstimates fop,, o2 and
correlation structure are “local” and can be consideredetodasonably accurate for the
purposes of modeling the site.

- best estimates of the random field between data sites shewttained using Best Linear
Unbiased Estimation d£riging.

- probability estimates should be obtained using the cameét random field. One possible
approach is to use conditional simulation (all realizagipass through the known data but
are random between the data sites).

2) data is gathered at a similar site or over a limited portibtine site to be modeled

- in this case, there is much greater uncertainty in applyirggstatistics obtained from
one site to that of another or in extending the results togeladomain. Typically some
assumptions need to be made about the ‘representativeriébe’ sample. This situation
typically arises in the preliminary phases of a design mwohlbefore the site has been
cleared, for example.

- if the statistics can be considered representative, pibtyaestimates can be made either
analytically or through Monte Carlo simulations. Krigirgyriot an option since data is not
available over the domain in question.

- the treatment of trends in the data needs to be more carefolisidered. If the trend
seems to have some physical basis (such as an increase ingoFgstance with depth),
then it may be reasonable to assume that the same trend aiibis site in question.
However, if the trend has no particular physical basis, thesrentirely possible that quite
a different trend will be seen at the site in question. Theloam field model should be
able to accommodate this uncertainty.

4.2 Data Analysis

4.2.1 Estimating the Mean

The task of data analysis and geostatistics is to deducedsenhof data the appropriate parameters
of a random field model of the soil property(s) in questionisTgenerally means that values for
the mean, variance and correlation structure are to be foumdortunately, the fact that the soil
property in question exhibits spatial correlation comgiies the estimation process. To illustrate
this, consider the usual estimator of the mean;

I
Hx = n ZlXi (4.1)

If the field can be considered stationary, so that egchas the same mean, thef/E] = u and
this estimator is considerathbiased(it is ‘aimed’ at the quantity to be estimated). It should be
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recognized that if a different set of observationsXofare used in the above, the estimated mean
will also likely be different, that ig.5; is itself a random variable. If th&,’s areindependenthen
the variance of.; decreases asincreases. Specifically,

Varl[jix] = J)Z(/n

which goes to zero as the number of independent observatipgees to infinity.

However, consider what happens when Myés are completely correlated, asiy = X, = -+ - =
X

I
Hx = 5:;2;432 =X

and Var{/i,] = 02, that is there is no reduction in the variability of the esttor i, asn increases.
In general the true variance of the estimatonill lie somewhere betwees? ands2 /n. In detail

1 n n 1 n n
Var[ji,] = — > ) Cov[X;, X;] = [ﬁ >N pij] 0% ~(T)o%

i=1 j=1 i=1 j=1

wherep,; is the correlation coefficient between and X; and~(T) is call thevariance function
The variance function lies between 0 and 1 and gives the anadwariance reduction that takes
place whenX is averaged over the sampling domdin= nAz. For highly correlated fields,
the variance function tends to remain close to 1, while favrfyocorrelated fields, the variance
function tends towarddxz /T = 1/n. Fig. 4.3 shows examples of a procés§) superimposed by
its average over a widtl' = 0.2 for poorly and highly correlated processes. When the gt
poorly correlated, the variability of the average tendseaariuch smaller than that of the original
X (t), while if the process is highly correlated, the averagel$eo follow X (¢) closely with little
variance reduction.

a) poorly correlated field b) Highly correlated field

2 2
0 x, o
T — X0

Figure 4.3 Effect of averaging on variance.

The implications of this discussion are as follows: while thean is typically estimated using
Eq. (4.1), it is important to remember that, in the case otloan fields with significant spatial
correlation, this estimator may itself be highly variabledancreasing the number of samples
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within a fixed domain may not decrease its variability (it Wwbhe better to increase the sampling
domain size). See, for example Fig. 4.4.

On the other hand, the fact that the mean estimator may relmginty variable is really only
important when the estimator is going to be used to model @ararsoil property at another site.
If the data is being gathered at the site in question, thereasing the number of sampldees
reduce the uncertainty at the site, even if the true meaneokthl property in general remains
guestionable.

Hx

Figure 4.4 Local estimates of mean and variance over sampling doffain

4.2.2 Estimating the Variance

Now consider a typical estimator of the variance;
32 = 15— 42)
n =1
It can be shown that this is a biased estimator with expectati
E[62] = o2 (1 - y(T)) (4.3)

In the presence of correlation? "< o2 sincey(T) lies between 0 and 1. In fae"— 0 as the
field becomes increasingly correlated (sin€g€) — 1 in this case). This situation is illustrated
in Fig. 4.4 where a slowly varying (highly correlated) soibperty is sampled over a relatively
short distancd’. In this case, the estimated variance is much smaller theutrtle variance and
the estimated mean is considerably different than the treanm In the case where thé’s are
independenty(7") tends towards An so that Eq. (4.2) is seen to be still biased. Sometimes the
unbiased estimator

. 1 ¢ .
6% = p—] Z(Xi — fix)? (4.4)
=1

is preferred.

Again, it can be seen that the estimate given by Eq. (4.2)stémtbecome quite uncertain as the
field becomes increasingly correlated. However, this isregaly important if a good estimate of
the true variance is being sought —Zifdenotes the site in question then the data will accurately
reflect that site (but cannot be used to extrapolate).
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4.2.3 Trend Analysis

In the preceding sections, a stationary random field wasiaitlpl assumed, having spatially
constant mean and variance. In many cases this is not soasitiet apparently so, over the
sampling domain. Often distinct trends in the mean can be, sa® sometimes the variance also
clearly changes with position. We reiterate that if suchdseare not physically based, i.e. if there
IS no reason to suspect that identical trends would be regestanother site, then their direct
estimation depends on whether the data is being used tootbare this site or another. If the
data is collected at the site to be estimated, then the d#stirhation of the trends is worthwhile,
otherwise probably not. If unexplainable trends are entsyed during an exploration and the
results are to be used to characterize another site, théalplgoa larger sampling domain needs to
be considered.

Assume that the data is collected at the site to be charaeterin such a case, the task is to obtain
estimates of., () ando2 (z), both as functions of position. Trends in the variancedgty require
significant amounts of data to estimate accurately. The Baggomain is subdivided into smaller
regions within each of which the variance is assumed spatiahstant. This allows a ‘block-wise’
estimation of the variance which may then be used to estimatend. Thus the estimation of
a non-stationary variance is simply a re-iteration of ttsishary variance estimation procedure
discussed earlier. Since often there is insufficient datltov such a sophisticated analysis, the
variance is usually assumed globally stationary.

Trends in the mean, in the case of stationary variance, cabtaged by least-squares regression
techniques. Here it is assumed that the mean can be desbyitzefidinction of the form

M
(@) = argi(@) (4.5)

k=1

whereq, are the unknown coefficients to be solved for, anfk) are pre-specified functions of
spatial positiong. In that complicated function are often unjustifiable, dlsudie mean trend is
taken to be linear so that, in one dimensigi(x) = 1, g»(x) = x and M = 2. In two dimensions,
the corresponding mean function would be bilinear, wittx) = 1, g>(z) = z1, g3(z) = x, and
94(z) = x125. The coefficients,, may be obtained by solving the so-calleormalequations;

G'Ga=Gy (4.6)
wherey is the vector of observations (the measured values of thegerty in question) is the

vector of unknown coefficients in Eq. (4.5) aftlis a matrix made up of the specified functions
gx(z,) evaluated at each of the observation locations,

@) gew) - galzy) |

g1(x)  ga(za) - - gu(zy)
g: . . . .

| g(z,) gz,) - - - gul(z,) ]

Although the matrix7 is of sizen x M, the normal equations boil down to jusf equations in
the M unknown coefficients of.
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With this estimate of the mean, the proces$z), can be converted into a mean stationary process
X'(z) = X(z) — fix(z). The deviation or residual proce&s is now approximately mean zero. If

a plot of X'(x) over space seems to indicate a non-stationary varianeetie variance? () can

be estimated by subdividing the sampling domain into sregilans as discussed above. Otherwise
an unbiased estimate of the stationary variance is

X n—M ( — fx(za) )2

whereM is the number of terms in Eq. (4.5).

If a non-stationary variance is detected and estimatedpprogimately stationary field in both
mean and variance can be produced through the transformatio

X(z) — fix(z)

Y@=

~

In addition, such a transformation implies th&t has zero mean and unit variance (at least in
approximation).

4.2.4 Estimating the Correlation Structure

An estimator of the correlation structure of a one-dimenaioandom field will be developed here.
The extension to the multi-dimensional case is only slightbre complicated.

Consider the sequence of random variall&s, X, ..., X, } sampled fromX(z) at a sequence
of locations separated by distanfe.. For the following estimator, it is essential that the daga b
equispaced. An unbiased estimator for the covariaB¢g\x) between any two random variables
alongz separated by the distangax, for j =0,1,...,n — M — 1is given by

ByA) = — S (X, ) (Yoo — st
i=1

where M is the number of unknowns used to estimatgx). The correlation coefficient is then
estimated as
BQA@

X

X(]Aw) -

whereo? = B(O) is the estimated variance.

In two dimensions, the estimator for the covariance atlag{jAx;, kAz,} involves a sum over
all data pairs separated by the lag Similarly in higher dimensions. The normalizing factor
1/(n — M — j) becomes (N — M) where N is the total number of data pairs separated-by
in the data set. h h
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4.2.5 Example: Statistical Analysis of Permeability Data

Consider a set of permeability measurements made by imfigter on 2 ft. by 2 ft. cells extracted
from a rectangular test pad of poorly compacted clay, as sliowable 4.1. The test pad is of
dimension 16 ft. by 16 ft. and the{, z,) coordinates shown on the table correspond to the center
of each 2 ft. square cell. All values are in units of 1@m/sec.

Table 4.1 Permeability data over a 16 foot square clay test pad.

T x (ft.)

(ft.) 1.0 3.0 5.0 7.0 9.0 11.0 | 13.0 | 15.0
1.0 | 53.69|61.94 | 82.38 | 65.49 | 49.71 | 17.85 | 42.83 | 14.71
3.0 | 98.42|46.87 | 109.41|99.40| 7.01 | 16.71 | 20.70 | 1.88
50| 4181 | 6.32| 20.75|3151| 6.11 | 26.88 | 33.71 | 13.48
7.0 | 149.19 | 11.47 0.63 | 14.88 | 8.84 | 73.17 | 40.83 | 29.96
9.0 | 140.93 | 30.31 1.04 | 092 | 2813485 | 331 | 0.24
11.0 | 105.74| 1.27 | 1058 | 0.21 | 0.04 | 057 | 292 | 7.09
13.0 | 99.05 | 12.11 0.12| 097 | 509 | 690 | 0.65| 1.29
15.0 | 16442 | 7.38 | 13.35|10.88| 853 | 222 | 3.26 | 0.73

A quick review of the data reveals first that it is highly vélewith K.,/ K,.;, > 4000 and
second that it tends from very high values at the left edge=(1) to small values asg; increases.
There also appears to be a similar, but somewhat less proadurend in the:, direction, at least
for larger values of:;.

The high variability is typical of permeability data, sinaeboulder will have permeability ap-
proaching zero, while an airspace will have permeabilitprapching infinity — soils typically
contain both at some scale. Since permeability is boundesvid®y zero, a natural distribution to
use in a random model of permeability is the lognormal — thislieen found by many researchers
to be a reasonable distribution for permeability. AIfis lognormally distributed, then IR will

be normally distributed. In fact the parameters of the lograd distribution are just the mean
and variance of Ik (see Table 2.6). Adopting the lognormal hypothesis, it igrapriate before
proceeding to convert the data listed in Table 4.1 intA'|data, as shown in Table 4.2.

Two cases will be considered in this example;

1) the data is to be used to characterize other ‘similar’ dagosits. This is the more likely
scenario for this particular sampling program.

2) the site to be characterized is the 16 foot square tes{wheeh may be somewhat hypothetical
since it has been largely removed for laboratory testing).
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Table 4.2 Log-Permeability data over a 16 foot square clay test pad.

T xq (ft.)
(ft.) 1.0 3.0 5.0 7.0 9.0 11.0 13.0 15.0
1.0 || -12.13 | -11.99 | -11.71 | -11.94 | -12.21 | -13.24 | -12.36 | -13.43
3.0 || -11.583 | -12.27 | -11.42 | -11.52 | -14.17 | -13.30 | -13.09 | -15.49
5.0 || -12.38 | -14.27 | -13.09 | -12.67 | -14.31 | -12.83 | -12.60 | -13.52
7.0 | -11.11 | -13.68 | -16.58 | -13.42 | -13.94 | -11.83 | -12.41 | -12.72
9.0 || -11.17 | -12.71 | -16.08 | -16.20 | -15.08 | -12.57 | -14.92 | -17.55
11.0 | -11.46 | -15.88 | -13.76 | -17.68 | -19.34 | -16.68 | -15.05 | -14.16
13.0 | -11.52 | -13.62 | -18.24 | -16.15 | -14.49 | -14.19 | -16.55 | -15.86
15.0 || -11.02 | -14.12 | -13.53 | -13.73 | -13.97 | -15.32 | -14.94 | -16.43

Starting with case (1), any apparent trends in the data eatetl as simply part of a longer scale
fluctuation — the field is assumed to be stationary in mean andnce. Using Egs. (4.1) and (4.4)
the mean and variance are estimated as

flin e = —13.86
52 . =372

To estimate the correlation structure, a number of asswmptan be made;

a) assume that the clay bed is isotropic, which appears gdiljysieasonable. Hence an isotropic
correlation structure would be adopted which can be estidhby averaging over the lagin
any direction. For example, wherr 2 ft. the correlation can be estimated by averaging over
all samples separated by 2 ft. in any direction.

b) assume that the principle axes of anisotropy are alignddthve z; andz, coordinate axes
and that the correlation function $&parable NOw i, (71, 2) = fin « (71) oin = (72) iS Obtained
by averaging in the two coordinate directions separatetylag vectors not aligned with the
coordinates need not be considered. Because of the reduodaken of samples contributing
to each estimate, the estimates themselves will be morablari

c) assume that the correlation structure is more genenaidptopic. Lags in any direction must
be considered separately and certain directions and ldgbave very few data pairs from
which to derive an estimate. This typically requires a laageunt of data.

Assumption (a) is preferred, but (b) will also be examinegutige the applicability of the first
assumption. In assumption (b), the directional estimaoegiven by

ny ni—j
GAT XL.), j=01. . .nm—1
p|l’1 (] l) |nK(n2(n1 - ) - ) ; ;( k)( j,k) J 1

ny ng—j

s—j)—1 )ZZ(sz)(XkH]) i=0,1,....n,—1

InK(nl(n PRy

Pk (JAT) =

where X/, = In K, — i« IS the deviation in Ik about the meam; andn, are the number of
samples in ther; andz, directions respectively, and wheter; = A, = 2 ft. in this example.
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The subscripts oX’ or In K index first ther, direction and second the direction. The isotropic
correlation estimator of assumption (a) is obtained using

1 ny ni—jJ ny nz2—j
PnxGAT) = = {Z Y (XX + > Z(X;;,»)(X;;M)} :

Oinge(n2(n1 — J) +malnz — ) = 1) | 4 5 Py

jZO,l,...,maX(nl,nz)—l

in which if ny # n,, then the 4, — j) appearing in the denominator must be treated specially.
Specifically for any; > n,, the (; — j) term is set to zero.

Fig. 4.5 shows the estimated directional and isotropicedation functions for the Ik data.
Note that at higher lags, the curves become quite erratics iShypical since they are based on
fewer sample pairs as the lag increases. Also shown on thésgditted exponentially decaying
correlation function. The scale of fluctuatigh,is estimated to be about 5 ft. in this case by simply
passing the curve through the estimated correlation at la@ ft. Note that the estimated scale is
guite sensitive to the mean. For example, if the mean is krtovae -12.0 rather than -13.86, then
the estimated scale using this data jumps to 15 ft. In effeetestimated scale is quite uncertain; it
is best used to characterize the site at which the data was.tdnfortunately, significantly better
scale estimators have yet to be developed.

—
X-direction
...................... Y-direction
_____ Isotropic
n | —-—-— Fitted,0= 5.28
o
ge-
a
n
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I T ' ! ! !
0 2 4 6 8 10 12 14
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Figure 4.5 Estimated and fitted correlation function forAhdata.

For case (2), where the data is being used to characterizgitth&om which it was sampled,
the task is to estimate the trend in the mean. This can be doaeséries of steps starting with
simple functions for the mean (i.e. constant) and progngstsi more complicated functions (i.e.
bilinear, biquadratic, etc.) monitoring the residual sage for each assumed form. The form
which accounts for a significant portion of the variance withbeing overly complex is selected.

Performing a least squares regression with a bilinear maactibn on the data in Table 4.2 gives
fin x(z) = —11.88 — 0.058¢; — 0.102z, — 0.011x;2,
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with corresponding residual variance of 2.58 (was 3.72ferdonstant mean case). If a biquadratic

mean function is considered, the regression yields,

/Aian(%) =—1251+ 0.643E1 + 0167.1'2 - 02851511'2

— 0.0501z% — 0.00604:3 + 0.0194r52, + 0.0131x,25 — 0.000965:225

with a residual variance of 2.18. Since there is not much efaction in variance using the more

complicated biquadratic function, the bilinear form iseséd. For simplicity, only two functional

forms were compared here. In general one might want to cenaltithe possible combinations of

monomials to select the best form.

Adopting the bilinear mean function, the residualglh= In K — /i, . are shown in Table 4.3.

Table 4.3 Log-Permeability residuals.

T xq (ft.)
(ft.) 1.0 3.0 5.0 7.0 9.0 11.0 13.0 15.0
1.0 | -0.077 | 0.203 | 0.623 | 0.533 | 0.403 | -0.487 | 0.533 | -0.397
3.0 | 0.749 | 0.192 | 1.225| 1.308 | -1.159 | -0.106 | 0.288 | -1.929
50| 0.124 | -1.539 | -0.133 | 0.513 | -0.900 | 0.806 | 1.262 | 0.569
7.0 | 1.620|-0.681 | -3.311 | 0.118 | -0.132 | 2.247 | 1.937 | 1.896
9.0 | 1.785| 0.558 | -2.499 | -2.307 | -0.874 | 1.949 | -0.088 | -2.406
11.0 | 1.721 | -2.343 | 0.133 | -3.432 | -4.736 | -1.720 | 0.266 | 1.512
13.0 | 1.886 | 0.185 | -4.036 | -1.547 | 0.513 | 1.212 | -0.749 | 0.340
15.0 | 2.612 | -0.046 | 0.986 | 1.229 | 1.431 | 0.523 | 1.346 | 0.298

Fig. 4.6 illustrates the estimated correlation structuréhe residuals

. Notice that the fitted scale

of fluctuation has decreased to about 3 ft. This is typicatesisubtracting the mean tends to

reduce the correlation between residuals. The estimateah nvariance and correlation function

(in particular the scale of fluctuation) can now be used centig to represent the random field of

log-permeabilities at the site.
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Figure 4.6 Estimated and fitted correlation function forAh— /i, , data.

4.3 Best Linear Unbiased Estimation

The purpose of Best Linear Unbiased Estimation (BLUE), &lsown as Kriging, is to provide a
best estimate of the soil properties between known datab@bkie idea is to estimat&(z) at any
point using a weighted linear combination of the valueot each observation point. Suppose
that Xy, X5, ..., X,, are observations of the random fied(z), at the pointss, z,, ..., z,,. Then
the BLUE of X (x) atz is given by

X@) =) BX, (4.7)
=1

where then unknown weightss; are to be determined. In the regression analysis performed
previously the goal was to find a global trend for the mean. eH#re goal is to find the best
estimate at a particular point. It seems reasonable thheipbintz is particularly close to one

of the observations, sa¥,, then the weight,, associated withX, would be high. However,

if X(z) andX, are in different (independent) soil layers, for examplentperhapg, should be
small. Rather than using distance to determine the weigligi(4.7), it is better to use covariance
(or correlation) between the two points since this refleotsomly distance but also the effects of
differing geologic units, etc.

If the mean can be expressed as in the regression analysi&}.BYj

M
fix(@) =) arge@) (4.8)

k=1
then the unknown weights can be obtained from the matrixtegua

Kf=M (4.9)
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whereK and )/ depend on the covariance structure,

I C11 C12 oo Ci, 91(%1) 92(%1) o gM(gl) |
Co1 Co oo Con, 91(%2) 92(%2) o gM(gz)
~ 91(@1) 91(252) S gl@n) 0 0 oo 0
gozq)  gaz0) - - ga(m) 0 0 S 0
Lgn(zy) gm(za) - - - gul,) O 0 S 0
in which C;; is the covariance betweexj, and .X; and
( ﬂl \ ( Clx 3\
62 OZx
~ i g1(z)
-2 go(x)
—TNnmr gu(z) )

The quantities); are a set of Lagrangian parameters used to solve the varmamimization
problem subject to non-bias conditions. Beyond allowingdasolution to the above system of
equations, they will be ignored in this simple treatmente Thvariancé”’;, appearing in the RHS
vector ) is the covariance between tif€ observation point and the pointat which the best
estimate is to be calculated.

Note that the matri¥y is purely a function of the observation point locations andariances —
thus it can be inverted once and then Egs. (4.9) and (4.7)repedtedly at different spatial points
to build up the field of best estimates (for each spatial poiet RHS vector)/ changes, as does
the vector of weightsj?).

The Kriging method depends upon two things; 1) knowledgeowf the mean varies functionally
with position, i.e. g1, g5, ... need to be specified, and 2) knowledge of the covariancetstauc
of the field. Usually, assuming a mean which is either congtdh= 1, g1(z) = 1, a; = fi) oOr
linearly varying is sufficient. The correct order can be deiaed by

1) plotting the results and visually checking the mean trendy
2) performing a regression analysis, or by

3) performing a more complex structural analysis — being Geostatisticdy Journel and
Huijbregts (Academic Press, 1978) for details on this apgno
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The covariance structure can be estimated by the methodssdisd in the previous section, if
sufficient data is available, and used directly in Eq. (4d0%)¢fineK and M (with, perhaps some
interpolation for covariances not directly estimated).tHa absence of sufficient data, a simple
functional form for the covariance function is often assdma typical model is one in which the
covariance decays exponentially with separation distance |z, — z,|;

_ 2|75
Ol-j—o—f(exp{ Oj

As mentioned previously, the parameteis called thescale of fluctuation Such a model now
requires only the estimation of two parameter$,and6, but assumes that the field isotropic
andstatistically homogeneousNon-isotropic models are readily available and often appate
for soils which display layering.

4.3.1 Estimator Error

Associated with any estimate of a random process derived &dinite number of observations is
an estimator error. This error can be used to assess theaagairthe estimate. Defining the error

as the difference between the estimaf¢z), and its true (but unknown and random) valixez),
the estimator mean and corresponding error variance aea gy

1x(2) = E[X(2)] = E[X(2)] = px(z)

52| (R0 - x@) | =0t #5108, - 201)

where and/,, are the first: elements of} and )/ defined in the previous section, aid, ,,,
is then x n upper left submatrix ofy containing the covariances, also defined in the previous

section. Note thak (z) can also be viewed as the conditional mearXdf) at the pointz. The
conditional variance at the pointwould then berZ2.

4.3.2 Example: Foundation Consolidation Settlement

In the spirit of Example 3 discussed in Section 3.2 of thegeq(see Fig. 3.7), consider the esti-
mation of consolidation settlement under a footing at eadetbcation given that soil samples/tests
have been obtained at 4 neighboring locations. Fig. 4.7 slaglan view of the footing and sample
locations. The samples and local stratigraphy are useditoas the soil parameters,, e,, H,
andp, appearing in the consolidation settlement equation

3 C. po+ Ap
S=N (1+eo> H log,, (7% >

at each of the sample locations. Each of these 4 paramewethar treated as spatially varying
and random between observation points. It is assumed teagshmation error in obtaining
the parameters from the samples is negligible compared Itb igiability, and so this source
of uncertainty will be ignored. The model error paramefér,is assumed an ordinary random
variable (not a random field) with mean 1.0 and standard tleni@.1. The increase in pressure at
mid-depth of the clay layer\p depends on the load applied to the footing. As in Sectionv8e2,
will again assume that EAp] = 0.5 ksf with standard deviationD.
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The task now is to estimate the mean and standard deviatioh, ef,, H, andp, at the footing
location using the neighboring observations. Table 4t4 tise soil settlement properties obtained
at each of the 4 sample points.

Table 4.4 Derived soil sample settlement properties.

Sample C, €o H Do
Point (inches) (ksf)
1 0.473 1.42 165 3.90
2 0.328 1.08 159 3.78
3 0.489 1.02 179 3.46
4 0.295 1.24 169 3.74
1 0.396 1.19 168 3.72
o? 0.009801 0.03204 70.56 0.03460
1
B N O
O Observation Point
[ Footing
35m
50m
-1 [ |
15m
4 3
E— O O

~— 20m%% 30m—=

50m
Figure 4.7 Consolidation settlement plan view with sample points.

In Table 4.4, we have assumed that all 4 random fields ar@sé#ati, with spatially constant mean
and variance, the limited data not clearly indicating othse. In order to obtain a Best Linear
Unbiased Estimate at the footing location, we need to dstablcovariance structure for the field.
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Obviously 4 sample points is far too few to yield even a rougfpreximation of the covariance
between samples, especially in two dimensions. Let us asslab experience with similar sites
and similar materials leads us to estimate a scale of fluotuat about 60 m using an exponentially
decaying correlation function, that is we assume that tlieetadgion structure is reasonably well

approximated by
2
o) = o] gle

In so doing, we are assuming that the clay layer is horizbniabtropic, also a reasonable
assumption. This yields the following correlation matretlween sample points;

1.000 0189 Q095 0189
0.189 1000 Q189 Q095
0.095 Q189 1000 Q189
0.189 Q095 0189 1000

Furthermore, it is reasonable to assume that the same dcllectoation applies to all 4 soil
propertles Thus, the covariance matrix associated welptiopertyC.. between sample points
is JUSt o—c p = 0.00980%. Similarly, the covariance matrix associated withis its variance

(62 =0. 03204) times the correlation matrix, etc.

In the following, we will obtain BLUE estimates from each bkt4 random fields({.(z), e,(z)
independently. Note that this does not imply that the esesavill be independent, since if the
sample properties are themselves correlated, which they likely are, then the estimates will
also be correlated. It is believed that this is a reasonabbd@pproximation given the level of
available data. If more complicated cross-correlationcttires are known to exist, and have been
estimated, the method a-Kriging can be applied — this essentially amounts to the use of a
much larger covariance (Kriging) matrix and the considerabf all four fields simultaneously.
Co-Kriging also has the advantage of also ensuring thatrtioe eariance is properly minimized.
However, co-Kriging is not implemented here, since the sgpaKriging preserves reasonably
well any existing point-wise cross-correlation betweeanftblds and since little is known about the
actual cross-correlation structure.

The Kriging matrix associated with the clay layer thicknéss then

2
11

[ 7056 1333 6682 1333
1333 7056 1333 6682
H 6.682 1333 7056 1333
1333 6682 1333 7056

1 1 1 1 0

zzN
11
[T T S

where, since we assumed stationarity,= 1 andg;(z) = 1 in Eq. (4.8). Placing the coordinate
axis origin at sample location 4 gives the footing coord#sat = (20, 15). Thus, the right hand
side vector}! is

( o%p(z,2) ) [ (7056)(02609) ) ( 1841 )
o2 (x5, 2) (70.56)(0.2151) 15.18
M, =< o%p(zs,x) ¢ =19 (7056)(03269) p = 23.07
o2 p(z4, 1) (70.56)(0.4346) 30.67

\ 1 / L 1 / \ 1 /
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Solving the matrix equatioii(HgH = M ,, gives the following four weights (ignoring the Lagrange
parameter);
0.192
0.150
" 0.265
0.393

in which we can see that the samples which are closest to ttmdoare most heavily weighted
(more specifically, the samples which are most highly catesl with the footing location are the
most heavily weighted), as would be expected.

Since the underlying correlation matrix is identical for 4lsoil properties, the weights will be
identical for all 4 properties, thus the best estimateseafdbting are

C. = (0.192)(Q473) + (0150)(0328) + (0265)(0489) + (0393)(0295) = 0386
¢, = (0.192)(142) + (0150)(108) + (0265)(102) + (Q393)(124) = 119
I = (0.192)(165) + (0150)(159) + (0265)(179) + (0393)(169) = 169
5, = (0.192)(390) + (0150)(378) + (Q265)(346) + (0393)(374) = 370

The estimation errors are given by the equation
O-E_O-X-I-ﬂT(Kan 72Mn)
Since then x n submatrix of K is just the correlation matrix times the appropriate vaz@n

and similarly M/, is the correlation vector (between samples and footingggitihe appropriate
variance, the error can be rewritten

52 =02 (1+87(p3, — 20))

wherep is the vector of correlation coefficients between the sampled the footing (see the
calculation of)M ,, above). For the Kriging weights and given correlation duite, this yields

62 = 02(0.719)

which gives the following individual estimation errors;

52 = (0.009801)(0719) = Q00705 — &, = 0.0839
52 = (0.03204)(0719) = Q0230 — 5, = 0152
52 = (7056)(0719) = 507 S 6, = 712
52 = (0.03460)(0719) = Q0249  — 5, = 0158

In summary, then, the variables entering the consolidateitiement formula have the following
statistics based on the preceding Kriged estimates;
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Variable Mean SD )
N 1.0 0.1 0.1
C, 0.386 0.0839 0.217
€o 1.19 0.152 0.128
H 169 7.12 0.042
Do 3.70 ksf  0.158 0.043

Ap 0.50ksf  0.100  0.20

The most significant difference between these results avgktehown in Section 3.2, Example 3,
are the reduced standard deviations. This is as expecteslisicorporation of observations tends
to reduce uncertainty. Now, a first order analysis of thdesant gives

oy ( 0386\ o (37T+05)
Ms—(-)m( )OgloT =L

To estimate the settlement coefficient of variation, a firdeoanalysis is again used as in Section

3.2; ,
2=y ) 2=y st
65_ <8XJ MS>“6j SJ(SJ

J=1 J=1

where the subscript on the derivative implies that it is evaluated at the meanllofaadom
variables. The variabld; is replaced by each a¥, C., etc., in turn. Evaluation of the derivatives
at the mean leads to the following table;

N 1.0 0.100 1.0 0.01

C, 0386 0.217 1.0 0.0471

€, 1.19 0.128 -0.54 0.0048

H 169 0.042 1.0 0.0018

Do 3.70 0.043 -0.94 0.0016

Ap  0.50 0.200 0.94 0.0353

so that .
02=" " S%%=0.10057
j=1

giving a coefficient of variation for the settlement at thetfog of 0.317. This is roughly a 10%

decrease from the result obtain without the benefit of anghimring observations. Although this
does not seem significant in light of the increased compl@fithe above calculations, it needs to
be remembered that the contribution to overall uncertaiatging from/N andAp amounts to over

40%. Thus, the coefficient of variation will decrease towards it's minimum (barring improved
information aboutV and/orAp) of 0.212 as more observations are used and/or observatiens
taken closer to the footing. For example, if a fifth sampleenmaken midway between the other
4 samples (at the center of Fig. 4.7), then the variance df eatmator decreases by a factor
of 0.46 from the point variance (rather than the factor ofLl.7ound above) and the settlement
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c.0.v. becomes 0.285. Note that the reduction in varianededound prior to actually performing
the sampling since the estimator variance depends onlysxrotariance structure and the assumed
functional form for the mean. Thus, the Kriging technique edéso be used to plan an optimal
sampling scheme — sample points are selected so as to maningzstimator error.

4.4 Probabilities

Once the random field model has been defined for a site, thensays of analytically obtaining
probabilities associated with design criteria, such asptiobability of failure. For example, by
assuming a normal or lognormal distribution for the footsegtiement in the previous section, one
can easily estimate the probability that the footing wikead a certain settlement given it's mean
and standard deviation. Assuming the footing settlemen¢ toormally distributed with mean 1.64
inches and a c.o.v. of 0.317 (standard deviation 310)(164) = 052) then the probability that
the settlement will exceed 2.5 inches is

25-164

P[S >25]=1— & ( 5

) =1 ®(165) = 005

441 Random Field Simulation

Sometimes the system being designed is too complicatedbiw #ie calculation of probabilities
analytically. Fortunately there is a simple, albeit congputtensive, solution; simulate realizations
of the random field and analyze each to produce realizatithe oesponse. From a set of response
realizations, one can build up a picture of the responseglalision from which probability estimates
can be derived. This is calledonte Carlo SimulatiofMCS). With computers becoming faster
and faster, MCS is becoming increasingly attractive.

Assume that the mean and covariance structure for the rarigdanto be modeled has been
established. Since the mean and covariance completelyfispe jointly normal distribution,

the following discussion will cover only the generation airmally distributed random fields.
Non-normal random fields can often be obtained through alsleitransformation of a normally
distributed field. For example, a lognormally distributaddom field can be obtained from

X(@) = exp{jin (@) + o1 (@) - Gl) |

whereu, » andoy,  are the mean and standard deviation of the normally dig&tbim X, possibly
both functions ofr, andG(z) is a normally distributed random field with zero mean, uatiance,
and correlation functiopy, .

The simulation of a normally distributed random field stavigh the generation of a sequence of
independenstandard normally distributed random variables (zero meaibvariance). Given two
random variablesiniformly distributed between 0 and 1, denotédand U,,,, two independent
standard normaVariates can be produced according to

Z; =/ —2In(1— U;)cos(2rU;.1)

Zi1 =/ —2In(1—U;)sin(2rU;44)



Probabilistic Methods in Geotechnical Engineering 71

The choice of whether to use (1U;) or simplyU; inside the logarithm is arbitrary. However, if
the pseudo-random number generator on your computer hassiseility of returning’; = 0, the
logarithm function may fail unless (& U;) is used. Usually uniform random number generators
on the interval (01) exclude one or the other bound. ¢emerical Recipes in (or Fortran) by
Presset al, Cambridge University Press, New York, 1992 for some goatbum random number
generators. These are highly recommended since randomengaberators supplied with some
standard libraries are suspect.

Once a sequence of independent standard normally digdlnaindom variables are available,
there are quite a number of different algorithms all desigiweproduce a random field. Only the
simplest will be considered here. The random field to be satedlis represented byrapoints,

x4, 5, ..., x, and realizations oK, X, ..., X,, are desired at each point, with the correct mean
and covarlance structure on average.p Ifs the correlation matrix associated with these points,
having components

Cov [X;, X;]

ox(2:)ox(z;)

thenp can be decomposed into the product of a lower triangularixnad its transpose,

Pij =

LL" =p

This is sometimes called Cholesky decomposition and stdradgorithms for its computation exist
(see agailNumerical Recipgs It will only fail in the event that one or more of th€;'s are perfectly
correlated. For example, i; is perfectly correlated witlx ;, then the Cholesky decomposition of
p will fail. The solution is to takeX;(z,) = X;(z,) + ,uX(x ) tx(z;), and eliminateX; from the
Correlation matrix. This S|mpI|f|es to jUSt taking; = |n the event that the mean |s stationary.
If more than one pair of variates are perfectly correlatetd: io each pair must be eliminated from
direct consideration in a similar fashion.

Another difficulty with the Cholesky decomposition apprbas that it becomes unwieldy and
prone to numerical round-off errors (often leading to fegluvhen the number of points in the field
becomes large. Oftem = 500 or so is a practical limit, reducing if the field is higldgrrelated.
In 2-D situations, this limits the field to about 25 by 25 psiand about 8 by 8 by 8 in 3-D. For
larger problems, more efficient algorithms are availabkse Benton (1994) for some of the more
common algorithms.

Given the matrix, a properly correlated (on average) standard normal rarfiétshtan be obtained
by linearly combining the independent standard normakvesi as follows

G, = ZL” N i=1,2,...,n

Finally, the known mean and variance can be reintroducedetd yealizations forX; which, on
average, will show the correct target statistics;

X; = Mx(gi) + Ux(gi)Gi

Once arealization of the random fiel{dhas been generated, it can be used as input to a deterministic
analysis. For exampleX could be the compression index figld which, coupled with random
field realizations foe,, H, andp,, could be used to compute settlements under an array ohfgoti
From this computation, the maximum settlement and diffeaésettiement can be readily extracted.
Repeating over an ensemble of realizations would allow tmestrtuction of a histogram of, say,
maximum differential settlements from which probabilitgtements could be made.
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4.4.2 Conditional Simulation

The preceding section discusses the simulation of soutelbnditionedrandom fields. In the

event that data is available at the site being simulatedditionalsimulation should be employed
to ensure that the random field realizations match the datheatlata locations exactly. An
unconditional simulation ignors this additional infornaat and will lead to higher variability in

the response quantities.

Suppose that the random field(x) has been measured at the poin{sz,, ..., r, and is to be
simulated at the points,,;, z,,.,, - - -, ,,- Thatis, we want to produce realizationsX{x) which
exactly match the data apoints and are random at the remainingp points. Then the simulation
of the conditioned random field involves the following steps

1) from the known data, compute best linear unbiased estgwdthe field at the unknown points
Ty, - - T, Call this field X (z). Atthe known points X, is equal to the dataNote: since
this is a simulation, the field mean must be prespecified. Mieians that the BLUE system of
equations becomes

KB =M

o nxXn o n

~

that is, the Kriging matrix and RHS vectors involve only tltevariances, and the estimator
becomes

Xi(@) = @) + > Bi(X; — px(z))

=1

2) generate an unconditioned realization of the random €isidg the specified mean, variance,
and correlation structure according to the method predentéhe previous subsection. Call
this field X, (),

3) compute best linear unbiased estimates of the field attkreawn points usind(, (z,), X.(x,),
..., X,(z,) as the known data. That is, produce a BLUE field from the uditmmed simula-
tion. Call this fieldX,(z). Again, this estimation uses only the covariances, asip($).

4) combine the three fields to produce the conditioned rat#dia, X, as follows,
Xe(z) = Xi(z) + [Xu(z) — Xs(2)]

Notice that at the known pointsy, = X, so that the conditioned field exactly matches the
data. Between the known points, the teri,(z) — X,(z)] represents a random deviation
which is added to the BLUE estimat€, such that the mean oX, is X, with increasing
variance away from the known points.

4.5 Summary

The use of random field models is not without its difficulti@is was particularly evident in the
estimation discussion since random field parameters migst bé derived from a single realization
(the site being explored). The interpretation of trendshia data as true trends in the mean or
simply as large scale fluctuations is a question which ctigrean only be answered by engineering
judgement. The science of estimation in the presence oéletion between samples is not at all
well developed.

As a result, the statistical parameters used to model a marichdd are generally uncertain and
statements regarding probabilities are equally uncertdinat is, because of the uncertainty in
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estimates of mean properties, statements regarding thalpitity of failure of a slope, for example,
cannot be regarded as absolute. However, they often yiakbreable approximations based on
a very rational approach to the problem. In addition, prdhggs can be used effectively in a
relative sense; the probability of failure of design A isslélsan that of design B. Since relative
probabilities are less sensitive to changes in the undagylgandom field parameters they can be
more confidently used in making design choices.
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Appendix A Basic Concepts of Probability and Reliability

FromProbabilistic Methods in Geotechnical Engineering
National Research Council Report, 1995

A.1 Background

An evaluation of the usefulness and role of reliability iotgehnical engineering cannot be made
without a clear understanding of the probability and risessment principles and methods that are
used. Accordingly, a brief overview of some basic conceppsesented in this appendix. Although
a text on basic probability and reliability concepts speaify written for geotechnical engineers
is current not available (with the possible exception ofiH4877), several texts (Benjamin and
Cornell, 1970; Ang and Tang, 1975, 1984, Harr, 1987) thatigueto civil engineering as a whole
can be referred to for a comprehensive and detailed trezftibe subject.

A.2 Description of Uncertainties and Probability Assessmat

Geotechnical engineers are very familiar with uncertasitil he uncertainty may be in the form of
a lack of information about the subsurface soil profile orrgdascatter in the soil test results, or it
may be associated with a substantial deviation of the medsi@ld performance from its predicted
value. When measurements on a given random variable alalaeaia histogram is often used to
portray the uncertainties associated with the variable graph is a plot of the number of observed
values for respective intervals of values of the variablen ekample of such a plot is Fig. A.1,
which shows a histogram of the undrained shear strengthurehérom laboratory testing of a
set of soil samples collected from a site. This plot showsttimmeasured soil strengths for this
soil range from 0.8 to 1.6 ksf. The measured strengths aghipisymmetrical about the central
value of 1.2 ksf. Fig. A.2 shows a histogram of the ratio, Nthaf measured-versus-predicted pile
capacity from a set of pile load testsThe actual capacity of a test pile ranges from as low as 40
percent of the value predicted to as great as twice thatqieetivalue. The shape of the histogram
is skewed toward higher values of the ratio N, which impliest exceptionally large ratios may be
observed. Besides drawing the histogram, statistical nneasan be calculated from a given set
of observed data to gain a better understanding of the loligiton of the variable.

A common statistic, theample meanis mathematically defined as the average of the observed
values. It is a measure of the central tendency of the randmmmblte. For the above case of
pile capacity, if the prediction model does not contain agstamatic bias, the mean value of
the observed ratios will be approximately 1.0. Any deviatas the computed mean d@¥ from

1.0 indicates that bias may be present in the model, whichdcmean either consistent over
prediction or underprediction by the model. T¢smple variancewhich is defined as the average
of the squared deviation from the sample mean for all obsevaéues, describes the amount of
dispersion of the variable from the central value. Becabsevairiance has a dimension that is a

1The pile tests were all in cle%/, and their capacities weredipted according to the procedures in the 16th edition
of Recommended Practice 2A of the American Petroleum Urist{L 986). To assure consistency, the soil strength
for all the test piles are based on unconfined compressiegitis on pushed samples or equivalent.
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Figure A.1 An example histogram of soil strength data.

square of the dimension of the mean, Hanple standard deviatipmvhich is the square root of
the variance, may be used to measure the average dispefslmariable from its mean value.
An even more convenient measure of the dispersion is givéhégoefficient of variation (c.0.v.),
which is the ratio of standard deviation to the mean and isn@edsionless quantity. Typical
c.0.v. values for shear strength of soil are 20 to 40 peredmtreas the value for the soil density is
smaller, around 5 percent.

In the above examples, the values observed represent oalyatiof observations. Another set of
observations would not likely give exactly the same indiabvalues. Thus, the histogram, as well
as the sample statistics defined above, is subject to \@aribgtween sets of observations. This
is particularly true of the number of observations in eadhissesmall. In fact, the measured data,
such as those cited above, only serve to provide some infaman the nature of the uncertainties
associated with the variable under consideration. Besligedirectly measured data at a given site,
an engineer often has a strong feeling about which valuest@gfenical variable will likely have
on the basis of judgement and prior experience. Indeedstiigctive information is most useful
in augmenting a small data base or (in the absence of meagat&xin determining a probability
model for the geotechnical variable.

A probability density functiolPDF) may be introduced to model the relative likelihood of a
random variable. The PDF describes the relative likelihtiad the variable will have a certain
value within the range of potential values. In a case whesestigineer believes that a given set
of measured data does not represent a set of realistic saaples of the engineering variable
and no other information is available, a PDF can be fitted oherfrequency diagram, which
is a modified histogram whose ordinate has been scales, sthéharea under the histogram is
unity. For instance, aormal distributionis a common probability distribution model used to fit
a symmetrical bell-shaped histogram. If the engineer adaptormal distribution to model the
undrained shear strength in Fig. A.1, the parameters of dh@al distribution, namely, ando,
can be estimated by the sample mean and sample standartiatevisspectively.

In most situations, however, the choice of the PDF will begblaan engineering judgement instead
of a histogram, because either the sample size of the olseryas small, or the engineer believes
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Figure A.2 Histogram of pile-test data. (The pile tests are all in ckayl their axial capac-
ities are predicted according to the 16th edition of Ameri€etroleum Institute,
Recommended Practice 2A, 1986. Source: Tang, 1988).

that the values measured are not representative of thesvalitiee pertinent variable, as is discussed
further in the next section. In a broad sense, the PDF may d&e tasexpress the overall feeling
of the engineer on the basis of all the evidence that is aMeild he evidence may include results
of various types of tests, geological history, geotechnesformance in similar soils, and the
engineer’s intuition. Thenean valueof the PDF represents the engineer’s best estimate of the
random variable without the addition of conservative agstions, and thetandard deviationor
c.0.v., of the PDF represents the engineer’s assessmd ohtertainty. A convenient probability
distribution type (e.g. normal or logonormal) may be se&d¢ctand calibrated with those mean
values and standard deviations that are consistent witlenigeneer’s judgement, to yield the
judgmentally based PDF of the variable. If an engineer iy cohfident with the maximum and
minimum values of a variable, a uniform distribution oves thnge may be used as a conservative
PDF, whereas a triangular distribution can model approteiyidahe engineer’s perception of the
relative likelihood over the given range of values. The PB$oaiated with an engineer’s belief can
change with time, especially when there is new evidencadlwamntrary to the engineer’s previous
opinion. The subject of updating probability with additedrnnformation will be discussed in a
later section.

Once the PDF of a random variable is established, it can lktosslculate the probability of an
event associated with a range of values of the variable. ristamce, suppose that the undrained
shear strength of the soil at a site is modeled by a normailulision with parameterg ando equal

to 1.2 and 0.17 ksf, respectively. The probability that thedrained shear strength, for example,
for the next test specimen from the site, will be less thaB k€i is given by

103-12

1.03
Fe@)de = ® <W> =d(—-1.0)=1- ®(1.0)=1-0841=0159  (A.1)

=00

where f(z) is the PDF of the random undrained shear strength, ®&@d is the probability
of a standard normal variate (i.e., with mean 0 and standavéhtion 1.0) less tham. Some
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typical values of the function are presented in Table 2.7;nfegative values of, the function
O(x) =1— P(—x).

The advantage of the probability model is that with appmterijudgement of the engineer the

PDF extends beyond the information portrayed by the obdette¢éa. The PDF incorporates the

engineer’s judgement on the applicability of the data fa $ipecific site, as well as any other

pertinent factors. Caution has to be exercised, howevendare the appropriateness of the PDF in
representing the engineer’s state of belief. Judgemeheaémgineer should also play a significant
role in the appropriate use of the probability estimatediftbe chosen PDF.

An engineer may also estimate the likelihood of a given ewkrectly, that is without going
through the PDF, based on judgmental information. Vick @)381ggested a workable procedure
for encoding probabilities from engineers. As describethmapproach adopted here to model
uncertainties, a judgmental probability or probabilitgtdibution should be more valuable than
one estimated strictly from observed data. It quantifiesetigineer’s opinion based on his or her
experience and interpretation of the available infornmati®y using these judgmental probabilities,
engineers can be assured that judgment, the most impolémneset in a reliability evaluation of
geotechnical performance will not be ignored but instedtbgienhanced.

A.3  From Soil Specimen to In Situ Property

The random variable in the first example (see Fig. A.1) is theérained shear strength of soil.
However, the measured data represent only the undrainadstinrengths of discrete soil specimens,
which are determined using a given test procedure. Thistisemessarily the strength that governs
the performance at the site. In fact, the pertinent soil ertypcontrolling the performance of
a foundation system often involves a much larger volume df stor instance, the average
shear strength along a potential slip surface will continel failure of a slope, and the average
compressibility of a volume of soil beneath a footing willntml the settlement of the footing.
In these two cases, the soil properties from each of the mamggthat constitute the domain of
influence will contribute to the performance. Hence a doraarage property is needed instead
of the property of discrete soil specimens. Sometimesgemsriow or high values of the soil
property within a small local region may also govern systariggmance. Examples include the
initiation of progressive failure in a slope by a local zorfeme@al material and piping failure in
an earth dam that is induced by a small zone of highly perneemlatterial. Even in these cases,
the local zone involved is often much larger than the sizetgpacal soil specimen. In any event,
the pertinent soil property is the average soil property aveappropriate spatial domain, large or
small; this soil property is referred to as the "spatial agerproperty". To evaluate correctly the
site performance, the probabilistic description (e.g. mesue and c.0.v.) of the spatial average
property must be determined.

Two factors are involved here. First, there is a size effédte law of averaging would imply
that the average soil property over a given volume or arebexilibit a smaller scatter than the
properties at individual locations. Hence, in many circtanses there is a reduction in variability
that depends on the size of the domain to be averaged, althosgme circumstances, increasing
the size of this domain may actually increase the varigbilit addition, the correlational structure
of the soil property will also affect the amount of reductionvariability. To study the effect
of correlation, observe first that soil samples collectejh@ht to each other are likely to have
properties that are similar to each other compared withdlagionships between those collected at
large distances apart. Also, soil specimens tested by the gavice will likely show less scatter
in the measured values than if they were tested by differewicds in separate laboratories. The
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degree of correlation as a function of separation distamte/den soil samples depends on the
specific soil type and deposit characteristics and on thpgrtp considered. Nevertheless, the
more erratic the variation (i.e., less correlated) of themoperty with distance and the larger the
soil domain considered, the larger the reduction in theabdlity of the average property will be.
this phenomenon is a result of the increasing likelihootluhasually high property values at some
points will be balanced by low values at other points; thenefthe average property is less likely
to take on exceptionally high or low values.

Second, the in situ soil property at incipient failure is netessarily duplicated by the sampling
and testing procedure performed on the soil specimen. Séthe causes of variance are sample
disturbance, different stress conditions, and macrofeatthat may not be well represented by a
small specimen. Each of these causes can yield test relsattare consistently lower or higher
than the in situ value; for example, a fissured clay might rel@wver in situ strength than that
measured in small samples. Hence, a bias may exist that teéedscorrected and incorporated
into the overall uncertainty evaluation.

To account for the effect of the two factors described in #s paragraph, Tang (1984) proposed
the following expressions for relating the mean and c.d.xhe average soil property in situ to
those of the tested soil specimens: L

A=Nzx (A.2)

C.OV. = § = /A2 + A2 + (D)2 (A.3)

where the mean soil property estimated from laboratory &t fests,z, is modified by the mean
bias, NV, of the respective test to yield the mean average soil ptgpér For the first c.o.v. on the
right side of Eq. (A.3)A denotes the uncertainty in the bias caused by the discrgfmteween
specimen and in situ property. The valuedfandA can be assessed subjectively by the engineer
after the factors causing the discrepancy are identifiectaaltiated. The second c.al,, denotes
the uncertainty contribution from taking a limited numbésamples, which can be expressed as a
function of the sample size. The third term is the produchefdquare oé,; the c.o.v. of property
values from tests on specimens; ar{d), a variance reduction factor depending on the size of the
averaging domair® and the spatial correlation characteristics of the soipprtes (Vanmarcke,
1984). Uncertainty contributed by the first two componestsien termed "systematic” in contrast
to the last component, which is termed "random”. Systeneertainties impose the same effect
(or discrepancy) on each soil element throughout the dpddimain considered and hence are
not subject to the averaging effect, unlike the spatialalality in the last term. It should be
emphasized that the c.o.v. values reported in the litezadte often estimated from measured test
values for small soil specimens, which generally are natasgntative of the in situ soil properties
governing geotechnical performance. Therefore, these. walues are essentially those denoted
by 4, in Eq. (A.3). They generally cannot be used directly in tality analysis; they need to be
modified by factors to account for the spatial averaging cédo and the hidden systematic bias
and error associated with the given type of test procedurédtermining that property. As shown
in Fig. A.3 for a case where the test strength has a consesvais, the probabilities calculated
for an event, for example, undrained shear strength lessitiieksf, can be substantially different
using the probability distribution based on the test speaistatistics (curve B) rather than using
that based on the average strength along a slip surfacee(é)rv

The discussion in this section considers a soil medium stingi of a single material type. In
problems such as instability of rock slopes that is indugethb most unfavourably oriented joint,
specific localized properties will affect the performanostéad of the average property. In this
case, undesirable extreme conditions are more likely toroas the volume of the soil or rock
increases. Another case is the phenomenon of progres#weefaitiated at some local weak
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A: average strength over slip surface
B: strength of test specimen
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Figure A.3 Discrepancy between distribution of in situ property anusehof specimen property.

zone. The larger the domain of soil considered, the moreradvewill become. If the soil stratum
consists of other materials whose properties are drastiddferent from those of the main soil
material, it will require a different model and analysis @edure.

Example

The average density of a 10-m-thick soil layer is estimatsed on the following infor-
mation:

1) Nine soil samples taken at widely scattered location® teeen tested for their den-
sities, which yielded a mean of 1,800 kg/iand a standard deviation of 200 kg/m
Assume random test error is negligible compared with spadizability.

2) Assume prefect correlation among soil densities in threzbotal plane and an expo-
nential correlation model with parameter 0.3 m in the vatttirection.

3) From long experience, the densities measured at thisdadg exhibit some discrep-
ancy from those in situ. this discrepancy could range batvde@and 1.06; that is, the
true in situ density may be from 90 to 106 percent of the latooyameasured values.

The c.0.v.,d,, denoting the inherent spatial variability of density be&n specimens is
200/1,800 or 0.111. For the given exponential correlatiodehand the averaging domain
of 10 m, the factory(D) is estimated to be 0.058 (Tang, 1984). The error due todimit
samples is given by.011/1/9 or 0.037 by assuming that the nine sample values are
statistically independent. Lastly, the error due to sysirbias can be evaluated by
assuming a uniform distribution between 0.9 and 1.06 foictireection factorN. which
yields a mean valuelV, of 0.98 and a c.0.v.\, of 0.047. Incorporating all of these
component statistics into Eq. (A.2) and Eq. (A.3), the meahaverall c.o.v. of the spatial
average density are

A =(0.98)(1800) = 1764 kg/fh (A.4)
§ = /0.0472 + 0.0372 + 0.058(Q111¥ = 0.066 (A.5)
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A.4 From Field-Test to Field Performance

Geotechnical engineers often have collected data on #sldperformance and compared these data
with those predicted according to a geotechnical model.fielettests may involve actual full-size
foundation systems or simply scaled-down field tests or é&eoratory model tests. An example
has been shown in Fig. A.2 for the case of axial pile capa@seld on a large number of pile tests.
In principle, the probability distribution of this ratiospecially that established on the basis of high-
quality field tests, can be used to determine the uncertasgpciated with a given performance
prediction model, which in turn may be used to estimate tlodability of failure of the given
geotechnical system. However, the applicability of thisgedure depends on the performance of
the geotechnical system under consideration being remise of the population of the field-test
systems used in assessing the model bias and c.o.v. If thareliscrepancy, additional factors
are required to modify the predicted performance. The bms@o.v. associated with each of
the factors can be estimated from reported research stadssn be based on judgement of the
engineer. An example of the use of pile test data in Fig. AtZf@luating the in situ capacity of
an offshore pile is given below.

Example

A large database from test piles was compiled by Olson anahiS€h982) from which the
discrepancies between the measured capacity and thatigedhy a given pile-capacity
prediction model were analyzed (Tang, 1988). Large scatténe ratio of predicted-
versus-measured capacity was observed, as shown in FigoApdes in clay. To apply
this result to the evaluation of the axial capacity of antodi® pile, corrections are needed
to account for the effects of factors such as

1) loading rate, because the strain rate in most pile testdriaction of 1 mm/minute,
whereas that during a severe storm could be much largereandler of 200 mm/second
or 10,000 mm/minute;

2) pile compressibility, because offshore piles are gdlyarauch longer than short piles
tested on land,

3) consolidation level, because the time at which the @litstorm hits could be years
after the installation of the piles, whereas test piles radiyrare tested within months
of installation; so the soil surrounding the test piles mayebeen subject to a different
degree of consolidation relative to the actual pile; and

4) the specific sampling/testing procedure used for s@hgfth determination at the given
site, which may be in contrast to that used for determinimgstiatistics of the model
bias and c.o0.v. The bias and c.o.v. associated with eachesétfactors have been
assessed and then combines through a fist-order probabdiigl to yield the overall
bias and c.o.v. of the in situ pile capacity (Tang, 1989) as

C52]\71]\_[2'"]\_[77162p (A6)
5y =\f02+ G5+ 42 (A7)

where N; andé; denote the respective bias (i.e., mean and c.0.v.) of theidul
correction factor for théth effect. The values oV, andj; depend on the dimension
of the pile, the sampling/testing procedure for soil sttendetermination, and the
environmental conditions at the proposed site (Tang, 1988)r a 300-ft pile in
a typical site at the Gulf of Mexico, with soil strengths detened by unconfined
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compression tests on driven samples, the overall mean $iestimated to be 2.15,
and overall c.o.v. is about 0.432. This implies that the pdpacity is expected to
be 2.15 times the predicted value. On the other hand, if uimeeoh unconsolidated
strength tests on pushed samples were used for determiméngoil strengths, the
corresponding overall bias and c.o.v. would be 0.865 an@if) respectively.

A.5 Factor of Safety

Satisfactory performance of a geotechnical system oft@emnt#s on its capacity relative to the
applied load. For a pile foundation system, a pile fails byngiing if the axial capacity of the
pile provided by the surrounding soil is less than the aoaldl from the superstructure. Slope
failure occurs if the total sliding resistance along a pb&rslip surface is less than the driving
force caused by the soil weight and other loads. Hence, isithplest case, a safety factor can be
defined as the ratio of the available resistari¢gp the applied loadl, or

F=R/L (A.8)

such that failure is given by the evef' < 1}. For the case where the applied load is known, or if
an engineer would like to assess the safety subject to argreddesign loadl. is a constant and
F can be alternatively defined as the factor by which the avigleesistance must be divided to
cause failure. The definition of safety factor in Eq. (A.8)slil not be confused with the traditional
design safety factor, which is treated deterministicadlytee ratio of the nominal resistance to the
nominal load. Further discussion of the traditional desigfety factor is presented at the end of
this subsection.

Since the available resistance and available load are egpbcs to uncertainties, they should be
modeled as random variables; this,in turn, will also be a random variable. The relationship
between the probability of failure and the probability dimitions of R andL is shown in Fig. A.4a.
The resistance can take on any value covered by the extdmt ®F ofR, that is, f,(r), whereas
the load can take on any value covered by the extent of the PDRlat is,f, (¢). The region under
the overlapping portion of the two PDF curves denotes the zamere the resistance may be less
than the load. Although the area of overlap is not the prdibabif failure, the relative size of the
overlapping region may be used as a rough comparison of lie/eslikelihoods of failure. As the
mean resistance increases (Fig. A.4b), likelihood of tilearadecreases as expected. A decrease
in the likelihood of failure can also be achieved by redudimg dispersion or uncertainty in the
resistance (Fig. A.4c). Mathematically, the probabilityaslure is calculated from the convolution
integral as follows

P[failure] = /0 h [ /g [ £u(r) dr] £.(0) de (A.9)

where the probability of the resistance being less than @ngwad value, which is given by the
bracket within the integral, is weighted by the PDF of thedl@aer all possible values d@f A
reliability index, 3, has been commonly used in the reliability literature toalerthe reliability
level without the explicit determination of the probalyilnf failure. For the safety factof;’, as
defined in Eq. (A.8)/ is approximately the ratio of the natural logarithm of theamé&’ (which is
approximately equal to the ratio of mean resistance ovenroeal) to the c.o.v. of B;a large value

2 This definition of 3 is not the standard definition @f associated with the first order reliability method, which
is presented later in this section, but it serves to dematesthe relationship between the mean safety factor,
uncertainties of load and resistance, and the probabilitgilire without using a more elaborate formulation.
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of 3 represents a higher reliability or smaller probability afdre. The reliability level associated
with a reliability indexs is approximately given by the functiok(;3), evaluated at, from Table
2.7. The probability of failure is simply £ ®(5). As shown in Figs. A.5a through A.5c, the
distribution of the safety factor corresponding to the sasfd-igs. A.4a through A.4c may be used
to determine the respective probabilities of failure, ngntlee probability that/” is less than 1.
The value off is larger for cases b and c relative to that for case a. By iadube uncertainty of
the resistance, the spread of the safety factor distributgzreases as shown in Fig. A.5c, yielding
a smaller probability of failure. Moreover, as the mean tyafector increases, the PDF shifts to
the right (Fig. A.5b) and the probability of failure decreas

The conventional factors of safety commonly used by engsare based on nominal values of
resistance and load. They are not mean safety factors. Tivewtional safety factor depends onthe
physical model, the method of calculation, and most impualgaon the choice of soil parameters.
Usually there is a lack of consensus on these choices, andarknge of levels of conservatism
on the choice of soil strength and methods of analysis is comnfihe uncertainty level associated
with the resistance and load is not explicitly consideredng&quently, inconsistency is likely to
exist among engineers and between applications for the sagiaeer. The same conventional
safety factor can be associated with a large range of rétialdvel and thus is not a consistent
measure of safety, as demonstrated in the following example use of a reliability index3,
such as that introduced earlier in this section, can prosigieficant improvement over the use of
the traditional design safety factor in measuring the nedatafety between the designs.

Example

In dam design, structural engineers designing concretatgrdams usef’ = 3.0 for
foundation design with respect to sliding failure, whiletgeehnical engineers designing
earth dams usg = 1.5 for similar foundation design. Does this mean that coeayedvity
dams are twice as safe as earth dams in regard to sliding? riBme=ais probably "no".
The reasons are (1) geotechnical engineers tend to be masereative in selecting soil
strength parameters, and (2) the valué'a$ generally not directly related to the likelihood
of failure. Reliability methods offer a tool to compare tledative safety between the two
design methods. Consider a simple case in which a dam is &@0dtat the base with a
height,h, in ft to be designed. The average undrained strength ofdihegpporting the
dam is 1,000 psf based on unconfined-compression tests beghgamples. Suppose the
dam is designed with respect to the sliding mode at the bassist a lateral hydrostatic
pressure of & x 62.5 x h? psf.

For a concrete dam, the design height of the dam can be obthynequating the ratio of
nominal resistance to nominal load, that is, (160800)/(0.5 x 62.5 x h?) to 3.0 yielding

a height of 80 ft. Similarly, for an earth dam, if the geoteichh engineer adopted a
conservative undrained soil strength equal to two-thifds®@average value measured, the
design height can be obtained by equating the rat@7(@ 1000x 600)/(0.5 x 62.5 x h?)

to 1.5, yielding a height of 87 ft.

To evaluate the reliability of each of these two designs wapect to the sliding-failure
mode, assume for simplicity that the in situ undrained gogirgyth is 0.9 of that measured
and that its uncertainty is represented by a c.o.v. of 30gmtrcThe mean safety factor
for the concrete dam is estimated by9®& 1000x 600)/(0.5 x 62.5 x 80%), that is, 2.7.
Hence its reliability index is (InZ)/(0.3) = 331. Similarly, the reliability index for the
earth dam is estimated as 2.75, which is substantially nfae balf of the value off
for the concrete dam. The probability of sliding failure tbe concrete dam is 0.00047,
compared with 0.00347 for the earth dam. In other words,Henalues assumed in this
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example, the earth dam is about seven times more likelyde fiian a concrete dam. On
the other hand, if the geotechnical engineer had adoptery@worservative undrained soll
strength equal to 40 percent of the average value measheedesign height of the earth
dam would be 71 ft and the corresponding probability of slidiailure of the earth dam

would be 0.00002. In spite of its smaller factor of safetg #arth dam would be only

about one-twentieth as likely to fail as the concrete dantHiwrcase.

The simple expression @t/ L used in defining the factor of safety may not be obvious atginfier
instance, in the stability analysis of a slope, the weightefsoil at the toe can act as counterweight
to resist the driving moment caused by the main mass of tHeskge. This contribution can
be either treated as additional resistance or reduced Dagdending on how this contribution is
treated, it may introduce a discrepancy in the evaluatiothefreliability index according to the
approximate procedure presented earlier. To overcomethtdem, a generalized safety factor,
F, may be used to define the satisfactory performance of ageutal system. The safety factor
can be represented by a general performance function

F:g(XlaX27"'7Xm) (Alo)

where theX;’s are the component variables. In fact, this formulatiom@e general, because the
resistance is usually a function of soil properties and getamvariables. Moreover, performance
pertaining to settlement or leakage rate may be more coentiypiexpressed as a function of the
loads, hydraulic head, soil, and other geometric variabkgtead of the ratid?/ L.

In principle, for given PDF of each of the component variabile the performance function
in Eq. (A.10), the probability thaf /' < 1} can be calculated. However, the calculation can
be mathematically cumbersome, involving many levels ofiyaimal or numerical integration.
Moreover, the engineer may be able to estimate perhapstminéan value and the c.o.v. (but not
the PDF) of most of the component variables due to a genatlaldbdata. As a result, one may
need to resort to approximate procedures for evaluatingribleability of failure.

Consider the first case where the PDF of each component iarsabatisfactorily prescribed by
the engineer. The mathematical problem of performing thiiphe integration can be avoided by
using Monte Carlo simulation. By this procedure, valuehef¢component variables are randomly
generated according the their respective PDFs; thesesvatedhen used to calculate the value of
the safety factor. By repeating this process many timegbleability of failure can be estimated
by the proportion of times that the safety factor is less thaa. The estimate is reasonably
accurate only if the number of simulations is very largepalbe smaller the probability of failure,
the larger the number of simulations that will be requiredhéW the PDF of some (or even all)
of the component variables are not prescribed but their naalres and c.o.v.’s are available, the
first-order reliability method may be used to determine #liability index and the corresponding
probability of failure approximately. The method is basedtlee truncation of the Taylor series
expansion of the safety factor beyond the first-order terherdfore, the method will yield a good
approximation if the functiog(-) is nearly linear or if the uncertainties of the componenmialdes
are small, for example if the c.o.v. is less than 15 percettie@vise, the results may be inaccurate
or difficult to obtain. The second-order reliability methbds been successful in improving the
accuracy of the results in some cases. Essentially, thisodettains one more term in the Taylor
series expansion; hence, it can approximate some nonli{eabetter. However, the method
generally requires additional information about the congra variables beyond their mean and
c.o.v. values, for instance their probability distributitype. for more details of the first-order
and second-order reliability method procedures, referng And Tang (1984) and Madsen et al.
(1986).
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A simpler use of the first-order method is to relate the c.of¥he safety factor to the c.o.v.’s of
the component variables. For instance, the c.o.v. of tretys&dctor in Eq. (A.10) is approximately

equal to
0p = [ S22 (A.11)

whereJ; is the c.o.v. of each variabl&;, and.S; is the sensitivity factor denoting the percent
change in safety factor for each percent of change in theevafuX,;. The sensitivity factor
may be determined analytically or numerically by taking gaetial derivative of the function
g(+) with respect to each variable. Both the sensitivity facod the c.o.v. of the component
variable are important in determining the contribution afigen variable to the c.o.v. af'. The
benefit of an uncertainty analysis, such as that in Eqg. (A.iklthat the relative contribution of
uncertainties from each variable, including the modelreoan be compared on a consistent basis.
This information can help the allocation of future reseagtfbrts or additional site explorations,
because one can identify the variables that have the mest &ff (or contribution to) the overall
c.o.v. of the safety factor. Reduction of the c.o.v. in theagables will likely yield the largest
improvementin the reliability of the current system as vaslsimilar systems in the future. Finally,
for a geotechnical system whose performance involves caxnplimerical procedures in lieu of
an analytical function, the point estimate method propdsedosenblueth (1975) can be used
efficiently to obtain approximate estimates of the mean and.cof the safety factor.

A.6 Reliability-Based Design

The discussion thus far has focused on evaluating the ii@lyadf a geotechnical system when the
uncertainties of the pertinent variables are defined. Insiggdesituation, one would be interested
in choosing a design that will achieve a desired or presdribeel of safety. As shown earlier
in Figs. A.4 and A.5, a geotechnical engineer can increasedlmability by increasing the mean
resistance, by reducing the c.o.v. of the resistance, oebyedsing the loads. To obtain a higher
ratio of mean resistance to the design load, one can deldhgredopt a low or conservative value
as the design resistance to be checked against the des@atedThis in turn will yield a mean
resistance that has a high value relative to the design foadhstance, the design resistance may be
afraction of the mean resistance, which can be obtainedimduacing a resistance facto(smaller
than one) to be multiplied by the mean resistance. By apglthe first-order reliability method,
one can determine the appropriate value of the resistantm faom the following equation

¢ =1—a; B9 (A.12)

which shows that the resistance factpdepends on the uncertainty level of thie variable (given
by c.0.v.9;), the desired level of reliability (given by), and a coefficienty; that measures the
sensitivity of theith variable relative to the other component variables. \Whik approach, the
more uncertain variables (i.e., those with lasger the more important variables (i.e., those with
largea;) will have relatively smaller resistance factafrs

Alternatively, the design resistance can be obtained bylidig the mean resistance by a factor
(larger than one). The relationship between the two fadsossmplyy = 1/¢. Eurocode No. 7,
Geotechnics, prefers to useas the resistance factor.

In determining the resistance factors for geotechnicabdes the proposed design code based on
Load and Resistance Factor Design procedures, a valgsloduld be used that is about the same
as the averagg associated with the current design. In other words, it idlicitly assumed that
the average reliability level of the current designed isfibto be acceptable and desirable.
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A.7 Multiple Modes of Failure

Safety of a geotechnical system may involve its satisfggb@rformance with respect to several
model of failure. For instance, a retaining wall could fayl twerturning, sliding, or inadequate
bearing capacity. Realistically, each of the failure modesld happen, reducing failure of the
system. The probability of foundation failure will gendyahcrease with the number of potential
model. Pertinent questions include: "Which mode is critioamost likely to occur?" and "How
much additional risk is contributed by the noncritical tmé modes?" Probabilistic analysis can
provide answers to these questions by evaluating the pildpal failure of each mode and can
further calculate the probability that at least one modéfail (i.e., system failure). For example,
in the case of a foundation subject to two modes of failure ptftobability of system failure is given
by the probability of the union of the two failure evetis and £, namely

P[El U Ez] = P[El] + P[Ez] — P[El N Ez] (A13)

which is the sum of the individual failure probabilitiesaftsubtracting the probability that both
modes occur. The last term in Eq. (A.13) will be simply thedaret of P £1] and H E5] if the two
failure modes are statistically independent or unrelatiéds recognized that the consequences,
such as physical damages, of these failure modes are nasaeitgthe same. Hence, to assess the
potential losses or damages in addition to the overall doitiba one should assess the probability
of individual failure modes, weigh each by the respectiv&s)aand combine each contribution
to determine the overall expected loss. On the other hamdfailure of a geotechnical system
may sometimes require the failure of a number of componesrtewogether. For instance, in the
example of dam design in karst terrain, the event of failarthe uncontrolled reservoir release,
which requires the occurrence of the following five evenig:eikistence of a foundation sinkhole;
(2) collapse of sinkhole; (3) dike fill cracks; (4) piping,dafb) dike breaching. The probability
of the failure event in this case is the product of the five congmt probabilities, which is much
smaller than any of the individual component probabilities

Consider next the case of a geotechnical system consistisgveral components. for instance,
the foundation of an offshore platform may consist of mamyilgir piles. for a given direction of
wave loading, the pile subjected to the largest load (defasdtie critical pile) may not necessarily
be the first to fail; in fact, each of the piles could be the fiodiail. Again, one would be interested
in how much additional risk is contributed by the noncritigges toward initial failure of the pile
system. Fortunately, the failure of the first pile in thiseas not likely to lead to collapse of
the platform system. It may require the failure of severatenales before the pile system fails
completely. A pertinent question is "What is the additiorederve implicit in the pile system
beyond the failure of the first pile?" Probabilistic methads be used to evaluate the relative
likelihood of various failure-path scenarios. Moreovéede methods can provide a measure of
the redundancy accounting for the combined effect ofakeectedeserve capacity as well as
the uncertaintiesn the system. For example, a redundancy factor can be dedméue ratio of
probability of initial failure to the probability of comple system failure. In other words, if there
is only a small likelihood of system failure given that a canpnt has already failed, or if system
failure is very unlikely compared with initial failure, thedundancy factor will assume a large
value as expected.

The importance of system consideration in reliability eiion cannot be understated. In the case
of slopes, sliding can occur along one of the many slip sega€or a long tunnel system, collapse
also can occur at any section. Because most of the reliahbitialysis is based on the critical
slip surface or the critical cross section of the tunnelcptures are needed to extrapolate these
critical component probabilities to those of the entiretgebnical system. Probabilistic methods
can provide the necessary analytical framework.
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A.8 Updating of Information

Geotechnical engineers traditionally have used the obtenal method to help them deal with
uncertainties in site conditions or performance behavioline engineer will begin with a few

hypotheses about the site conditions, and field obsenstwa then gathered to pinpoint the
correct hypothesis. This procedure can be formalized byyagmpprobability theory. Whenever

there is additional information about the site, be it fromta exploration program for a new site,
measurements from nondestructive diagnostic tests foxiatirey infrastructure, or observations
during an early phase of construction, Bayesian probglphbcedures provide a logical basis for
revising the engineer’s judgement of the site charactesisConceptually, the updated probability
of a given hypothesid{;, based on observatiof, is determined from Bayes’ theorem as

P'[Hy] = kL[ E | H,{]P'[H4] (A.14)

where B H;] may represent the estimated probability of Hypothesisidrgo the observation;
L[ £ | H,], commonly referred to as the likelihood function, is thkelihood of Hypothesis 1
producing the observation, aridis a normalizing constant such that the sum of the updated
probabilities of all potential hypotheses will be 1.0. Edsaly, the likelihood function represents
information from the observation; it is used to modify thepjudgemental probabilities to obtain
the updated probabilities. Bayes’ theorem thus furnistsystematic means of quantifying relative
likelihood of the respective conceptual models in light loé tobservations and the respective
reliability associated with each observation scheme. &lmsbability values can be used to
discriminate between contending models; they also candmktosipdate the performance reliability
of a proposed geotechnical system. More importantly, byliety considering the relative
reliability of respective observation schemes and retatikelihood of the conceptual models
before and after the observations, the usefulness of easdnaiion scheme in improving the
overall system performance can be compared beforehand wilhfacilitate the selection of what
to measure or observe. Waste-remediation decisions, wherkasingly involve geotechnical
engineers, can benefit greatly from the above-describdzhpilistic observational method; this is
also true for many other geotechnical applications, ragngiom dam safety to repair/maintenance
decisions concerning deteriorating infrastructures.

Hachich and Vanmarcke (1983) demonstrated an applicafi@agesian methods to update the
relative likelihood of two hypotheses of the drainage ctods of a dam based on piezometer
measurements. The method was used by Tang et al. (1994)ateupe coefficient of compression
of waste material based on a set of settlement plates iedtalla landfill site. These authors also
showed how the Bayesian updating procedure could be incatgabin a probabilistic observational
method to facilitate decisions associated with a landfitecalesign. The following simple example
demonstrates the essence of the Bayesian updating precedur

Example

Leakage of contaminated material is suspected from a gaedfill. Monitoring wells
are proposed to verify if leakage has occurred. The locatioriwo wells are shown in
Fig. A.6. For simplicity, suppose that if leakage has ocadirthe engineer estimates that
the probability that it will be observed by Well A is 80 pertewhereas well B is 90
percent likely to detect the leakage.

Assuming that neither well will erroneously register anyht@nination if there is no

leakage from the landfill. Before any of these wells is insthlthe engineer believes that
there is a 70 percent chance that the leakage has happenedid€dirst the case that
well A has been installed and no contaminants have beenvduseClearly, the engineer’s
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Figure A.6 Locations of monitoring wells for potential leakage of caminants from a

landfill.

belief that leakage has occurred will decrease. With thiseolation, Bayes’ theorem
yields

= P[A|L]P[L] B 0.2x 0.7 3
PLLIA] P[A|L]P[L]+P[A[L]P[L] 02x07+1x03 0318
where L. denotes the event of leakage denotes the event of no leakagédenotes the
event of well A detecting contaminatios{ denotes the event of well A not detecting
contamination, and H.] is the engineer’s estimate of leakage probability. In pbaliig
theory, P[L \ A} represents theonditional probability namely the probability of leakage
given that well A did not detect contaminants. Although thservation from well A
seems to support the hypothesis that leakage has not ogcthieehypothesis cannot be
fully substantiated because of the imperfect detectglmfitvell A and also because of the
engineer’s prior judgment. By considering these factdrs,a@ngineer would now believe
that there is only a 31.8 percent chance that leakage hasredcu

Suppose well B also has been installed, and it also fails tecti@ny contamination.
By applying Bayes’ theorem again, the probability of leakdmpsed on the combined
observations that both wells did not detect contaminagon i

PLI AN B = P[A n B|L]P[L]
P[A N B|L|P[L]+P[A N B|L|P[L]
3 0.2x0.1x0.7
T 02x01x07+1x1x03

= 0.045 (A.15)

In the above calculation, the detectabilities between thiésvinave been assumed indepen-
dent for simplicity. Hence, PA N B| L] is simply the product of PA| L] and P[B | L].
The results show that the observations from the two momigosiells apparently imply that
there is practically no likelihood of a leak. However, besmof the imperfect reliability
of the wells in diagnosing the leakage event, there is spitidability, through very small,
that leakage has indeed happened.
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A.9 Uncertainty in Mapping of Material Types

Uncertainty in mapping arises when it is necessary to iffertype of soil material that exists at
unobserved points from data obtained at points of obsenwafAin example is the inference of the
soil profile from borehole information during the charaization phase of a site. The question
is, "What is the probability of finding a specific material ¢/pt a point, given that the material
has been found or not found at another point or points?" Tbkeahility can be evaluated with the
application of Bayesian methods, given a geological motibleospatial distribution of the material
type. Wu et al. (1989) presented contour maps showing thieapibity of encountering clay at
a given point in a soil stratum based on borehole samples @mel genetration records collected
at a North Sea site. In fact, Bayes’ theorem has been usedsexé/ in conjunction with site
characterization (e.g., Baecher, 1972; Wu and Wong, 1981)instance, the unexpected presence
of geologic anomalies, such as pockets of weak material istiissoil stratum or sand lenses
in an otherwise impermeable clay stratum, can cause geotatHailures. Even if a given site
exploration program has not encountered such geologic alypthe experience of the engineer
with the geology of the region may suggest that it could btilpresent at the site. In this case, the
engineer’s judgment can be combined with the level of sifdaation efforts spent (e.g., number
of borings) by means of the Bayesian procedure to estimatékélihood of anomaly presence
and the probability distribution of its size and locationa{lth and Tang, 1993). The effects of
these potential geologic anomalies then can be incormbiatéhe reliability evaluation of the
geotechnical system.

A.10 Decision Under Uncertainty

Very often, engineers- or more appropriately, their ckelmave to decide between alternatives that
comprise different levels of expenditure and differenthadoilities of success. To rank a set of
design alternatives, the potential risk associated witlvangalternative should be considered, as
well as the capital cost of the alternative. A decision tsaeh as that shown in Fig. A.7 for a
landslide mitigation decision at a given site, can be usé@ procedure identifies first the available
alternatives of action and the possible outcomes, or seggesf outcome events associated with
each alternative. Then the respective consequences & fosstach scenario or path can be
assessed. The probability of each branch of outcome cantbardeed either from probabilistic
models or by the engineer’s judgement based on the availafiolenation. The probability of a
path is simply the product of the respective probabiliti#fie expected cost of each alternative
is the summation of the path probability multiplied by thdlpaonsequence over all outcome
scenarios for that alternative. The alternative with tlasteexpected cost is considered optimal if
the commonly used expected value criteria is adopted fatelesion. In this example, the optimal
alternative for landslide mitigation at the site is to ilistadrainage system.

When the input probabilities and costs to the above deciamalysis are only crude estimates,
a sensitivity analysis should be performed to check if thinogd alternative will change within
the estimated range of values for each probability or ce,(s.g., Vick and Bromwell, 1989;
Massmann et al., 1991).
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10

12

11

11

1

Expected
Cost

—— 1.96

——— 1.79



Probabilistic Methods in Geotechnical Engineering 91

Appendix B A Selected Bibliography

B.1 Articles and Books

AMERICAN PETROLEUM INSTITUTE, 1986. Recommended practice for planning, design and
constructing fixed offshore platformsAPlI Recommended Practice 28ixteenth Edition.
Washington, D.C.

ANG, H.A.-S., and TanGg, W.H., 1975. Probability Concepts in Engineering Planning and
Design, Vol. 1: Basic Principleslohn Wiley & Sons, New York.

ANG, A.H.-S., and TanGg, W.H., 1984. Probability Concepts in Engineering Planning and
Design, Vol. 11: Decision, Risk and Reliabilifjohn Wiley & Sons, New York: Currently
distributed by BookMasters, Inc., Ohio.

BAECHER, G.B., 1972.Site Exploration: A Probabilistic Approa¢cPhD Thesis, Massachusetts
Institute of Technology, Cambridge, Massachusetts.

BAECHER, G.B., 1979. Analyzing exploration strategies. Site Charaz&¢ion and Exploration,
C.H. Dowding, ed., New York: American Society of Civil Engers.

BAECHER, G.B., 1986. Geotechnical error analysis. Pp. 23-35iructure Foundations
Transportation Research Record 1105. TransportationaRgs8oard, National Research
Council, Washington, D.C.

Benjamin, J.R., and CorNELL, C.A., 1970. Probability, Statistics and Decision for Civil
EngineersMcGraw-Hill, New York.

Benson, C.H., and CHARBENEAU, R.J., 1991. Reliability analysis for time of travel in
compacted soil liners. Pp 456-467 @eotechnical Engineering Congress 19%SCE
Geotechnical Special Publication No. 27, New York.

BErAN, J., 1994 Statistics for Long-Memory Process&hapman & Hall, New York.

Borcarpi, 1., KeLry, W.E., and BArRDOSSY, A., 1989. Reliability model for soil liner:
Initial design, ASCE Journal of Geotechnical Engineerjdd 55), pp. 658-669.

BorGArDI, 1., KELLy, W.E., and BArRDOssY, A., 1990. Reliability model for soil liner:
PostconstructiolASCE Journal of Geotechnical Engineerjdd §10), pp. 1502-1520.

CHOWDURY, R., Tang, W.H., and Sip1, 1., 1987. Reliability model of progressive slope
failure, Géotechnique&7(4), pp. 467—481.

DE FENETTI, B., 1970.Theory of Probabilitytransl. by A. Machi and A. Smith, John Wiley &
Sons, New York.

Duncan, J.M., JAVETTE, D.F., AND STARK, T.D., 1991. The importance of a dessicated
crust on clay settlementSpils and Foundation81(3), pp. 73-90.

EINSTEIN, H.H., LABRECHE, D.A., MARKOW, M.J., and BAECHER, G.B., 1978. Decision
analysis applied to rock tunnel exploratidngineering Geologyl2(2), pp. 143-161.

EinsTEIN, H.H., and BAEcHER, G.B., 1983. Probabilistic and statistical methods in engi-
neering geology, Part 1. Exploratiori8pck Mechanics and Rock Engineeridg(1), pp.
39-72.



Probabilistic Methods in Geotechnical Engineering 92

FEnTON, G.A., 1994. Error evaluation of three random field generat&lSCE Journal of
Engineering Mechani¢4.20(12), pp. 2478-2497.

FeEnTON, G.A., and GrIFFITHS, D.V., 1993. Statistics of block conductivity through a simple
bounded stochastic mediuMater Resources Reseaf@¥(6), pp. 1825-1830.

FeENTON, G.A., 1990. Simulation and Analysis of Random Field¥).D. Thesis, Princeton
University, Princeton, New Jersey.

FeEnTON, G.A., and VANMARCKE, E.H., 1990. Simulation of random fields via local average
subdivision ASCE Journal of Engineering Mechanjdd.6(8), pp. 1733-1749.

FExTON, G.A., andVANMARCKE, E.H., 1991. Spatial variation in liquefaction risk assessment,
pp. 594-607 inGeotechnical Engineering Congress 19®SCE Geotechnical Special
Publication No. 27, Vol. |, New York.

Foravan, J.I., Hoeag, K., and BEnjaMmIN, J.R., 1970. Decision theory applied to settlement
predictionsASCE Journal of Soil Mechanics and Foundations Divis86(SM4), pp. 1127-
1141.

FREEZE, R.A., MAsSMANN, J., SMITH, L.., SPERLING, T., and JaAmEs, B., 1990. Hydro-
geological decision analysis: 1. A framewo@gound Water28(5), pp. 738—766.

GILBERT, R.B., 1996. A modelto design QA/QC programs for geomembrane sieamsASCE
Journal of Engineering Mechanic press.

GILBERT, R.B., and Tang, W.H., 1995. Reliability-based design of waste containment
systemsProceedings of Geoenvironment 20@8GCE Specialty Conference, New Orleans,
Louisiana, pp. 499-513.

GrirriTHS, D.V., and FENTON, G.A., 1993. Seepage beneath water retaining structures
founded on spatially random soféotechniqued3(4), pp. 577-587.

HacHicH, W., and VANMARCKE, E.H., 1983. Probabilistic updating of pore pressure fields,
ASCE Journal of Geotechnical Engineerjd®93), pp. 373-385.

HALDAR, A., and Tang, W.H., 1979. A probabilistic evaluation of liquefaction potexi
ASCE Journal of Geotechnical EngineerjA@YGT2), pp. 145-163.

Hariv, 1.S., and TanG, W.H., 1993. Site exploration strategy for geologic anomaly abar
terization, ASCE Journal of Geotechnical Engineerjdd 92), pp. 195-213.

Hariv, 1.S., and TanGg, W.H., 1990. Bayesian method for characterization of geological
anomaly, pp. 585-594 iRroceedings of The First International Symposium on Uraiety
Modeling and Analysis90 (ISUMA), Los Alamitos, California, IEEE-Computer Sety
Press.

HampTON, J.M., MOORE, P.G., and THomAs, H., 1973. Subjective probability and its
measurement]. Royal Statistical SocSeries A, 136 pp. 21-42.

HArr, M.E., 1977.Mechanics of Particulate MedjaMcGraw-Hill, New York.
HArr, M.E., 1987.Reliability-Based Design in Civil EngineeriniylcGraw-Hill, New York.

Hoeag, K., and MurakA, R.P., 1974. Probabilistic analysis and design of a retainind,wal
ASCE Journal of Geotechnical Engineerjd@QGT3), pp. 349-366.

LOENARDS, G.A., 1982. Investigation of failuresASCE Journal of Geotechnical Engineerjng
108(GT2), pp. 185-246.

LuwmB, P., 1974. Application of statistics in soil mechanics, pp. 442 in Soil Mechanics: New
Horizons |.K. Lee, ed., Newnes-Butterworth, London.



Probabilistic Methods in Geotechnical Engineering 93

MapseN, H.O., Kwenk, S., and Linp, N.C., 1986.Methods of Structural SafetiPrentice-
Hall, Inc., Englewood Cliffs, New Jersey.

MASSMANN, J., FREEZE, R.A., SMITH, L.., SPERLING, T., and JAMES, B., 1991. Hydro-
geologic decision analysis: 2. Applications to groundevaontaminationGround Watey
29(4), pp. 536-548.

Matsuo, M., and AsaokaA, A., 1982. Bayesian calibration of embankment safety under
earthquake loadingstructural Safety2(1), pp. 53-65.

McGrATH, T.C., GiLBERT, R.B. and McKinNEY, D.C., 1996. Value and reliability
of DNAPL-source location programs: A preliminary framewoProceedings of DNAPL
ASCE Specialty Conference, Washington, in press.

MEYERHOF, G.G., 1976. Concepts of safety in foundation engineering astwodeoffshore, pp.
501-515 inProceedings of the 1st International Conference on the Bienhar Offshore
Structures Trondheim, Norway, Vol. 1.

Morris, P.A., 1974. Decision analysis expert usé&anagement Scienc2((9), pp. 1233-1241.

NaTionAL RESEARCH CounciL, 1982.Risk and Decision Making; Perspectives and Research
Committee on Risk and Decision Making, NRC. National AcaaeRress, Washington,
D.C.

Ouson, R.E., and DEnNis, N.D., 1982. Review and compilation of pile test results, axial
pile capacity. Geotechnical Engineering Report CR83uhiversity of Texas, Department
of Civil Engineering, Austin, Texas.

Peck, R.B., 1969. Advantages and limitations of the observationalhwetin applied soil
mechanicsGéotechniquel(2), pp. 171-187.

Peck, R.B., 1980. Where has all the judgement goré@nadian Geotechnical Journdl7, pp.
584-590.

Puoon, K.K., Quek, S.T., CHow, Y.K., andLEg, S.L.., 1990. Reliability analysis of pile
settlementASCE Journal of Geotechnical Engineerjdd §11), pp. 1717-1735.

RoBERDs, W.J., 1991. Methodology for Optimizing Rock Slope PreventatiWaintenance
Programs, irProceedings of the ASCE Geotechnical Engineering Congésstechnical
Special Publication No. 27, Vol. 1, Boulder, Colorado, p@-6345.

RoseENBLUETH, E., 1975. Point estimates for probability momerfspceedings of National
Academy of Sciences of the United States of Amefia0), pp. 3812-3814.

SPETZLER, C.S., and STAEL vON HoLSTEIN, C-A., 1975. Probability encoding in decision
analysisManagement Scienc2?(3), pp. 340-358.

Tancg, W.H., 1971. A Bayesian evaluation of information for foundatemgineering design,
First Intern. Conf. on Applications of Statistics and Prblday to Soil and Structural Engrg.
Hong Kong, pp 174-185.

Tana, W.H., 1984. Principles of probabilistic characterization oif pooperties,Probabilistic
Characterization of Soil Propertie®.S. Bowles and Hon-Kim Ko, eds., ASCE, New York,
pp. 74-89.

Tang, W.H., 1988. Offshore Axial Pile Design Reliability, Final Rep&or Project PRAC 86-
29B sponsored by the American Petroleum Institute. Codi#isi®report may be obtained
from the American Petroleum Institute, Washington, D.C.

Tancg, W.H., 1989. Uncertainties in offshore axial pile capacigundation Engineering:
Current Principles and Practicé=.H. Kulhawy, ed., ASCE, New York, pp. 833-847.



Probabilistic Methods in Geotechnical Engineering 94

TanGg, W.H., GiLBERT, R.B., ANGuLO, M., and WiLLiAMS, R.S., 1994. Probabilistic
observation method for settlement-based design of a landfier, Vertical and Horizontal
Deformations of Foundations and Embankme¥ésing and Felio, eds., ASCE Geotechnical
Special Publication No. 40, New York, pp. 1573-1589.

Tang, W.H., YuceMEN, M.S., and AnGg, A.H.-S., 1976. Probability-based short term
design of soil slopes;anadian Geotechnical Journdl3, pp. 201-215.

TanGg, W.H., 1993. Recent developments in geotechnical reliabilipy, B—28 inProbabilis-
tic Methods in Geotechnical Engineering.S. Li and S-C.R. Lo, eds., A.A. Balkema,
Rotterdam.

VANMARCKE, E.H., 1974. Decision Analysis in Dam Safety Monitoring,Rnoceedings of the
Engineering Foundation Conference on Safety of Small DASEE, New Hampshire, Aug
4-9, pp 127-148.

VANMARCKE, E.H., 1976. Probabilistic Modeling of Soil Profile&SCE Journal of Geotechnical
Engineering103(11), pp. 1227-1246.

VANMARCKE, E.H., 1976. Reliability of earth slope8SCE Journal of Geotechnical Engineer-
ing, 10311), pp. 1247-1265.

VANMARCKE, E.H., 1983. Random Fields: Analysis and SynthediI|.T. Press, Cambridge,
Massachusetts.

VANMARCKE, E.H., 1989. Reliability in Foundation Engineering PracticefFoundation Engi-
neering: Current Principles and Practic®roc. ASCE Conference, Evanston, lllinios, pp
1658-1669.

VANMARCKE, E.H., HEREDIA-ZAVONI, E., and FENTON, G.A., 1993. Conditional simu-
lation of spatially correlated earthquake grouA&CE Journal of Engineering Mechanics
11911), pp. 2333-2352.

Vick, S.G., 1992. Risk in geotechnical practic8eotechnique and Natural HazardBiTech
Publishers, Ltd., Richmond, British Columbia, pp. 41-62.

Vick, S.G., and BRoMwELL, L.G., 1989. Risk analysis for dam design in kars§CE Journal
of Geotechnical Engineerindg156), pp. 819-835.

Vick, S.G., 1992. Risk in geotechnical practig@eotechnical Newd.0, pp. 55-57.

Wu, T.H., 1974. Uncertainty, safety and decision in civil enginegriASCE Journal of
Geotechnical Engineerind 00(GT3), pp. 329-348.

Wu, T.H., 1989. Variability of geological materials, pp. 221-239Tine Art and Science of
Geotechnical Engineering at the Dawn of the Twenty-FirsttGey, E.J. Cordinget al,, eds.,
Prentice-Hall, Englewood Cliffs, New Jersey.

Wu, T.H., andWonga, K.F., 1981. Probabilistic soil exploration: Case histoisCE Journal
of Geotechnical Engineering071GT12), pp. 1693-1711.

Wu, T.H., LEg, I-M., POTTER, J.C., andKJjoksTAD, O., 1987. Uncertainties in evaluation
of strength of a marine sandl, Geotechnical Engrg1137), pp. 719-738.

Wu, T.H., Kiekstap, O., LEg, I.M., and LAcassg, S., 1989. Reliability analysis of
foundation stability for gravity platforms in the North S€anadian Geotechnical Journal
26, pp. 359-368.

YEGIAN, M.K., and WHITMAN, R.V., 1978. Risk analysis for ground failure by liquefaction,
ASCE Journal of Geotechnical Engineerjd®4GT7), pp. 921-938.



Probabilistic Methods in Geotechnical Engineering 95

B.2 Conference Proceedings

PROCEEDINGS OF INTERNATIONAL CONFERENCES ON APPLICATIONS OF STATISTICS AND
PROBABILITY TO SOIL AND STRUCTURAL ENGINEERING (ICASP),

Hong Kong, 1971

Aachen, 1975

Sydney, 1979

Florence, 1983

Vancouver, 1987

Mexico City, 1991

Paris, 1995

PROCEEDINGS OF THE INTERNATIONAL CONFERENCES ON STRUCTURAL SAFETY AND RE-
LIABILITY (ICOSSAR),

Munich, 1977

Trondheim, 1981

Kobe, 1985

San Francisco, 1989

Innsbruck, 1993

PROBABILITY THEORY AND RELIABILITY ANALYSIS IN GEOTECHNICAL ENGINEERING,
D.A. Grivas, ed., Report of an NSF Workshop at Rensselagté&udinic Institute, 1966, RPI,
New York.

THE PRACTICE OF GEOTECHNICAL ENGINEERING — DECISION MAKING UNDER UNCER-
TAINTY,
ASCE National Convention, Session 35, Atlanta Georgia9197

RELIABILITY ANALYSIS AND GEOTECHNICAL ENGINEERING,
ASCE National Convention, Boston, Massachusetts, ASCE YaWw, 1979.

PROCEEDINGS, SEMINAR ON PROBABILISTIC METHODS IN GEOTECHNICAL ENGINEERING,
Sept. 1982, Vicksburg, Mississipi.

PROBABILISTIC CHARACTERIZATION OF SOIL PROPERTIES: BRIDGE BETWEEN THEORY
AND PRACTICE,
ASCE National Convention, Atlanta, Georgia, ASCE New Ydr834.

SELECTED TOPICS IN GEOTECHNICAL ENGINEERING LUMB VOLUME,
K.S. Li, ed., Dept. of Civil Engineering, University CollegUniversity of New South Wales,
Canberra, Australia, 1991.

PROCEEDINGS OF CONFERENCE ON PROBABILISTIC METHODS IN GEOTECHNICAL ENGI-
NEERING,
Canberra, Australia, Feb. 1993, A.A. Balkema, Rotterdam.



